User Tools

Site Tools


elements:mwat2

MWAT2

Plane or axisymmetric state

Description

Complete coupled analysis soil mechanics-3 fluids. Couplings: Mechanical-Water-Air-Temperature in large deformations.

Type: 205

The element is defined by 3, 4, 6, 8, 15 or 25 nodes indicated in NODES in the order indicated in the figure.

The flow (water, air, temperature) description can be different from the mechanical description: pressure/temperature could be linearly interpolated in a 3 or 4 nodes configurations, while the mechanical DoFs would be parabolically interpolated in a 6 or 8 nodes configuration. In that case, the fluid DoF must be fixed for the non-used nodes.

The “fluid” constitutive laws that can be used with this element are, for now:

  • WAVAT: MWA coupling: Mechanical - Water - Air
  • WAPET: MWP coupling: Mechanical - Water - Oil


15-node element (12 I.P.)

For the element with 15 nodes, the interpolation functions are the following: \[N_1=\zeta(4\zeta-1)(4\zeta-2)(4\zeta-3)/6 \\ N_2=\xi(4\xi-1)(4\xi-2)(4\xi-3)/6 \\ N_3=\eta(4\eta-1)(4\eta-2)(4\eta-3)/6 \\ N_4=4\zeta\xi(4\zeta-1)(4\xi-1) \\ N_5= 4\xi\eta(4\xi-1)(4\eta-1) \\ N_6= 4\eta\zeta(4\eta-1)(4\zeta-1) \\ N_7=\xi\zeta(4\zeta-1)(4\zeta-2)*8/3 \\ N_8=\zeta\xi(4\xi-1)(4\xi-2)*8/3 \\ N_9=\eta\xi(4\xi-1)(4\xi-2)*8/3 \\ N_{10}=\xi\eta(4\eta-1)(4\eta-2)*8/3 \\ N_{11}=\zeta\eta(4\eta-1)(4\eta-2)*8/3 \\ N_{12}=\eta\zeta(4\zeta-1)(4\zeta-2)*8/3 \\ N_{13}=32\eta\xi\zeta(4\zeta-1) \\ N_{14}=32\eta\xi\zeta(4\xi-1) \\ N_{15}=32\eta\xi\zeta(4\eta-1) \]
25-node element (16 I.P.)

For the element with 25 nodes, the interpolation functions are expressed from the following functions: \[\begin{align*} N_1&=N_1(\xi)N_1(\eta) & N_{14}&=N_1(\xi)N_4(\eta) \\ N_2&=N_2(\xi)N_1(\eta) & N_{15}&=N_1(\xi)N_3(\eta) \\ N_3&=N_3(\xi)N_1(\eta) & N_{16}&=N_1(\xi)N_2(\eta) \\ N_4&=N_4(\xi)N_1(\eta) & N_{17}&=N_2(\xi)N_2(\eta) \\ N_5&=N_5(\xi)N_1(\eta) & N_{18}&=N_3(\xi)N_2(\eta) \\ N_6&=N_5(\xi)N_2(\eta) & N_{19}&=N_4(\xi)N_2(\eta) \\ N_7&=N_5(\xi)N_3(\eta) & N_{20}&=N_4(\xi)N_3(\eta) \\ N_8&=N_5(\xi)N_4(\eta) & N_{21}&=N_4(\xi)N_4(\eta) \\ N_9&=N_5(\xi)N_5(\eta) & N_{22}&=N_3(\xi)N_4(\eta) \\ N_{10}&=N_4(\xi)N_5(\eta) & N_{23}&=N_2(\xi)N_4(\eta) \\ N_{11}&=N_3(\xi)N_5(\eta) & N_{24}&=N_2(\xi)N_3(\eta) \\ N_{12}&=N_2(\xi)N_5(\eta) & N_{25}&=N_3(\xi)N_3(\eta) \\ N_{13}&=N_1(\xi)N_5(\eta) \end{align*}\]

With: \[N_1(X)=1/6X-1/6X^2-2/3X^3+2/3X^4 \\ N_2(X)=-4/3X+8/3X^2+4/3X^3-8/3X^4 \\ N_3(X)=1-5X^2+X^4 \\ N_4(X)=4/3X+8/3X^2-4/3X^3-8/3X^4 \\ N_5(X)=-1/6X-1/6X^2+2/3X^3+2/3X^4 \]
Implmented by: J.P. Radu & J.D. Barnichon, 1986

Files

Prepro: MWAT2A.F
Lagamine: MWAT2B.F

Input file

Title (A5)
TITLE“MWAT2” in the first 5 columns
Control data (4I5)
NELEMNumber of elements
ISPSMAS= 0 → Nothing
= 1 → Take into account the specific mass if and only if NTANA<0
INSIG= 0 → No initial stress
= 1 or 2 → Initial stresses
INBIO= 0 → No Biot coefficient
= 1 → Isotropic Biot coefficient
Specific mass in dynamic analysis - Only if ISPMAS = 1 (1G10.0)
SPEMASSpecific mass
Initial stresses - Only if INSIG > 0 (4G10.0)
If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$
If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,0)$
SIGY0 $\sigma_{y0}$ effective stress $\sigma_y$ at the axes origin
DSIGYEffective stress gradient along Y axis
AK0X$k_0$ ratio $\sigma_x/\sigma_y$
AK0Z$k_0$ ratio $\sigma_z/\sigma_y$ (if AK0Z=0, AK0Z=AK0X)
The computation of SIGY0 and DSIGY must take into account the apparent specific mass, defined as \[\rho_a'=[(1-n)\rho_s+nS_w\rho_w]-\rho_w\] where:
$\rho_s$ is the solid specific mass - this represents the specific mass of a fictive sample where ther is no porosity, i.e. where the grains occupy the whole volume of the sample
$\rho_w$ is the fluid specific mass
$n$ is the porosity defined in the flow law related to the element
$S_w$ fluid saturation, ∈ [0,1]
Biot coefficient - Only if INBIO = 1 (1G10.0)
CBIOTBiot coefficient
Definition of the elements (6I5/16I5(/9I5))
NNODMNumber of nodes for the mechancial description: 3, 4, 6, 8, 15, or 25
NINTMNumber of integration point (1, 3, 4, 7, 9, 12, or 16) for the mechanical description
LMATMMechanical material
NNODPNumber of nodes for the flow description: 3, 4, 6, 8, 15, or 25
NINTPNumber of integration points (1, 3, 4, 7, 9, 12, or 16) for the flow description
Must be equal to NINTM
LMATFFlow material
NODES(NNODEM)List of nodes

Results

  • Stresses (in global axes)
    • Mechanical stresses $\sigma_x$, $\sigma_y$, $\sigma_{xy}$, $\sigma_z$
    • Flow in water $f_{wx}$, $f_{wy}$, $f_{w,stored}$, 0
    • Flow in air $f_{ax}$, $f_{ay}$, $f_{a,stored}$, 0
    • Thermal flow $f_{tx}$, $f_{ty}$, $f_{t,stored}$, 0
  • Internal variables:
    • Internal variables of the mechanical law
    • Internal variables of the flow law
elements/mwat2.txt · Last modified: 2023/11/22 14:52 by gilles