User Tools

Site Tools


laws:epmohr

EP-MOHR

Description

Elasto-plastic constitutive law for solid elements at constant temperature (non-associated) with linear elasticity. Isotropic hardening/softening of friction angle and cohesion is possible and the Mohr Coulomb yield surface is represented.

The model

This model is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains, with a Mohr Coulomb yield surface.

Integration is performed using an implicit backward Euler scheme with a return mapping normal to the flow surface $g$. This law can take into account the influence of:

  • the first stress invariant, i.e. the yield surface is either parallel to the pressure axis in the $p-q$ plane,
  • the third stress invariant, i.e. the Lode angle : the trace in the deviatoric plane is an irregular hexagon.

Yield and flow surfaces

The stresses and stress invariants are: $$ I_{\sigma} = \sigma_{ij} \quad ; \quad \hat{\sigma}_{ij}=\sigma_{ij}-\frac{I_{\sigma}}{3}\delta_{ij} $$ $$ II_{\sigma} = \sqrt{\frac{1}{2}\hat{\sigma}_{ij}\hat{\sigma}_{ij}} \quad ; \quad III_{\sigma} = \frac{1}{3}\hat{\sigma}_{ij}\hat{\sigma}_{jk}\hat{\sigma}_{ki} $$ $$ \beta = -\frac{1}{3} \;\sin^{-1}\left(\frac{3\sqrt{3}}{2} \frac{III_{\sigma}}{II_{\sigma}^3}\right) $$

The Mohr-Coulomb failure criterion is an intrinsic curve criterion. It expresses a linear relationship between the shear stress $\tau$ and the normal stress $\sigma_N$ acting on a failure plane. $$ \tau = c + \sigma_N \;\tan\phi $$ where $c$ is the cohesion and $\phi$ the friction angle. This criterion can be expressed in a more general fashion in term of principal stresses by the relation $$ f=\frac{I_{\sigma}}{3}\sin\phi + II_{\sigma}\cos\beta -\frac{II_{\sigma}}{\sqrt{3}}\sin\beta\sin\phi-c\cos\phi = 0 $$

The criterion predicts identical friction angles under triaxial compression paths and triaxial extension paths.

Hardening/softening

Hardening/softening is assumed to be represented by the evolution of friction angles and/or cohesion as a function of the Von Mises equivalent plastic strain $$ \varepsilon_{eq}^p = \sqrt{\frac{2}{3}\hat{\varepsilon}^p_{ij}\hat{\varepsilon}^p_{ij}}$$

Hyperbolic functions are used $$ \phi = \phi_0+\frac{(\phi_f-\phi_0)\varepsilon_{eq}^p}{B_p+\varepsilon_{eq}^p}\quad , \quad c=c_0+\frac{(c_f-c_0)\varepsilon_{eq}^p}{B_C+\varepsilon_{eq}^p} $$ where coefficients $B_p$ and $B_c$ are respectively the values of equivalent plastic strain for which half of the hardening/softening on friction angles and cohesion is achieved (see figure 2).

Files

Prepro: LMOHR.F
Lagamine: MOHR2EA.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalised plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
IL Law number
ITYPE 591
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (5I5)
NINTV number of sub-steps used to integrate numerically the constitutive equation in a time step. If NINTV=0 : number of sub-steps is based on the norm of the deformation increment and on DIV
ISOL = 0 : use of total stresses in the constitutive law
$\neq 0$ : use of effective stresses in the constitutive lax. See Appendix 8
ICBIF = 0 : nothing
= 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis)
IECPS = 0 : $\Psi$ is defined with PSIC and PSIE
= 1 : $\Psi$ is defined with PHMPS 
KMETH = 2 : Actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value)

Real parameters

Line 1 (6G10.0)
E Young elastic modulus
ANU Poisson ratio
PSI Dilatancy angle (in degrees)
RHO Specific mass
DIV Size of sub-steps for computation of NINTV (only if NINTV=0 ; Default value = $5.D-3$)
PHMPS Constant value for definition of … ?
Line 2 (3G10.0)
PHI0 Initial Coulomb's angle (in degrees)
PHIF Final Coulomb's angle (in degrees)
BPHI Only if there is hardening/softening 
Line 3 (3G10.0)
COH0 Initial value of cohesion
COHF Final value of cohesion
BCOH Only if there is hardening/softening

Stresses

Number of stresses

4 for 2D analysis
6 for 3D analysis

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For 2D analysis :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

For 3D analysis :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

State variables

Number of state variables

37 for the 2D plane strain analysis with bifurcation criterion (ICBIF=1)
25 in all the other cases

List of state variables

Q(1) = 1 in plane strain state
circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) actualised specific mass
Q(3) = 0 i the current state is elastic
= 1 if the current state is elasto-plastic
Q(4) plastic work per unit volume ($W^p$)
Q(5) volume variation
Q(6) equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\Delta t$
Q(7) equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\Delta t}{\varepsilon_{eq1}}$
Q(8) X deformation
Q(9) Y deformation
Q(10) Z deformation
Q(11) XY deformation
Q(12)
Q(13) equivalent strain indicator n°2 (Villote n°2) : $\alpha_2=\frac{\Delta\varepsilon_{eq}}{\varepsilon_{eq2}}$
Q(14) actualised value of equivalent plastic strain $\varepsilon_{eq}^p$
Q(15) actualised value of cohesion $c$
Q(16) actualised value of Coulomb's friction angle
Q(17) = 0 if the stress state is not at the criterion apex 
= 1 if the stress state is at the criterion apex
Q(18) number of sub-intervals used for the integration
Q(19) memory of localisation calculated during the re-meshing
Q(20)
Q(21) principal stress n°1
Q(22) principal stress n°2
Q(23) principal stress n°3
Q(24) ICRITF 
Q(25) $\rightarrow$ Q(37) reserved for bifurcation
laws/epmohr.txt · Last modified: 2020/08/25 15:46 (external edit)