User Tools

Site Tools


laws:wavat

WAVAT/WAVAT3

Description

Water - air seepage - thermal coupled – vapour diffusion 2D/3D constitutive law for solid elements

The model

This law is only used for water seepage - air seepage-thermal coupled and vapour diffusion for non linear analysis in 2D/3D porous media.

Conservation de la masse d’eau (Liquide + vapeur)

\[ \underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w \vec{q_l})}_{\text{Liquide}} + \underbrace{\frac{\partial}{\partial t} (\rho_v . n . S_{r,g}) + div(\rho_v \vec{q_g})}_{Vapeur} = 0 \]

Ecoulement du liquide et de la vapeur

En partant de l’équation de Darcy, la vitesse du liquide (Volume de fluide par unité de surface de sol) est donnée par : \[ \vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y)\right]\ \text{où}\ k_w = K_w \frac{\mu_w}{\rho_w g}\left[ m^2\right] \]

La vapeur se déplace uniquement dans les pores occupés par la phase gazeuse et le trajet qu'elle parcourt dépend de la tortuosité : \[ \vec{i}_v = - n S_{r,g} \tau D \rho_s \vec{grad} \omega_v \] Où $\omega_v = \rho_v/\rho_g$ est la teneur massique d’air sec dans le mélange gazeux.

Equations d’état du liquide

  1. Viscosité dynamique $\mu_w$: \[\mu_w (T) = \mu_{w,0} - \alpha_w^T \mu_{w0}(T-T_0)\]
  2. Masse volumique $\rho_w$: \[\rho_w (T, p_w) = \rho_{wo}\left[ 1+\frac{p_w-p_{w0}}{\chi_w} - \beta_w^T (T-T_0) \right]\]
  3. Perméabilité intrinsèque $k_w$:
    Dépendance avec le degré de saturation $S_w$ : $k_{r,w} = f(S_w)$ avec $k_{w,eff} = k_f k_{r,w}$
  4. Degré de saturation $S_w$:
    Dépendance avec la succion $s = p_a - p_w : S_w = f(s)$

Conservation de la masse de l’air sec

\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) + div(\vec{i_a}) = 0\]

Ecoulement de la phase gazeuse et l’air sec

En partant de l’équation de Darcy , la vitesse de la phase gazeuse est donnée par : \[ \vec{q_g} = - \frac{k_g}{\mu_g}\left[ \vec{grad}(p_g) + g \rho_g \vec{grad}(y)\right]\ \text{où}\ k_g = K_g \frac{\mu_g}{\rho_g g}\left[ m^2\right] \] La vitesse de diffusion de l'air sec est liée à un gradient de la masse volumique de l'air. En utilisant la théorie de la diffusion adaptée au cas des milieux poreux, nous pouvons écrire : \[ \vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} \omega_a = -\vec{I}_v \] Où $\omega_a = \rho_a/\rho_g$ est la teneur massique d’air sec dans le mélange gazeux.

Equation d’état de l’air sec

  1. Viscosité dynamique $\mu_a$ : dépendance avec la température \[\mu_a (T) = \mu_{a,0} - \alpha_a^T \mu_{a0}(T-T_0)\]
  2. Masse volumique $\rho_a$ :
    Hypothèse : L’air est considéré comme un gaz parfait. \[\rho_a (T, p_a) = \rho_{a,0}\frac{p_a}{p_{a,0}}\frac{T_0}{T} \]
  3. Perméabilité intrinsèque $k_g$:
    Dépendance avec le degré de saturation $S_g$ : $k_{r,g} = f(S_g)$ avec $k_{g,effectif} = k_{g, intrinsic}k_{a,w}$
  4. Degré de saturation en liquide $S_g$:
    Dépendance avec la succion $s = p_g - p_w$
    $S_g = 1-S_w$ d’où voir partie liquide

Conservation en volume de la chaleur

\[\dot{S_T} + \dot{E}_{H_2O}^{w\rightarrow v}L + div(\vec{V}_T) - Q_T = 0\] Où $S_T$ représente la quantité de chaleur emmagasinée, $L$ la chaleur latente de vaporisation, $\vec{V}_T$ le flux de chaleur et $Q_T$ une source de chaleur en volume.

Cette dernière équation peut être transformée en utilisant l'équation de bilan de la vapeur d'eau: \[ \dot{S_T} + \dot{S}_vL + div(\vec{V}_T) + div(\vec{V}_v) L - Q_T = 0 \]

Quantité de chaleur emmagasinée par unité de volume

La quantité d'enthalpie du système est définie comme la somme des contributions de chaque espèce du système: \[ S_T = H_m = \sum_i H_i = \sum_i \theta_i \rho_i c_{p,i} (T-T_0) \] Les contributions de chaque composante à l’enthalpie du système s'exprime selon : \[ \begin{array}{l} H_w = n.S_{r,w} \rho_w c_{p,w} (T-T_0) \\ H_a = n(1-S_{r,g})\rho_ac_{p,a} (T-T_0)\\ H_s = (1-n)\rho_s c_{p,s} (T-T_0)\\ H_v = n(1-S_{r,g})\rho_v c_{p,v} (T-T_0) \end{array} \] Un dernier terme, lié à la vaporisation de l’eau, contribue également à l'emmagasinement de chaleur et dépend de la quantité de vapeur et la chaleur latente de vaporisation. \[ H_{Lat} = nS_{r,g} \rho_{v} L \]

Transfert de la chaleur par unité de volume

\[ \vec{V_T} + \vec{V_v}L = \underbrace{- \Gamma_m \vec{\nabla}T}_{conduction} + \underbrace{\left[c_{p,w}\rho_w \vec{q}_l + c_{p,a}(\vec{i}_a + \rho_a \vec{q}_g) + c_{pv}(\vec{i}_v+\rho_v\vec{q}_g)\right](T-T_0)}_{convection} + \underbrace{\left[\vec{i}_v + \rho_v \vec{q}_g\right] L}_{Latente} \]

Equations d’état

  1. $\rho_w, \vec{f_w}, S_w$: Voir partie eau
  2. $\rho_a, \vec{f_a}, S_a$ : Voir partie air
  3. Les conductivités thermiques $\Gamma_w,\Gamma_a$ et $\Gamma_s$ : \[\begin{array}{l}\Gamma_w(T) = \Gamma_{w,0} + \Gamma_{w,0} \gamma_w^T (T-T_0)\\ \Gamma_a(T) = \Gamma_{a,0} + \Gamma_{a,0} \gamma_a^T (T-T_0)\\ \Gamma_s(T) = \Gamma_{s,0} + \Gamma_{s,0} \gamma_s^T (T-T_0) \end{array}\]
  4. Les chaleurs spécifiques $c_{p,w},c_{p,a}$ et $c_{p,s}$ :\[\begin{array}{l} c_{p,w}(T) = c_{p,w0} + c_{p,w0} H_w^T (T-T_0) \\ c_{p,a}(T) = c_{p,a0} + c_{p,a0} H_a^T (T-T_0)\\ c_{p,s}(T) = c_{p,s0} + c_{p,s0} H_s^T (T-T_0)\end{array}\]

Files

Prepro: LWAVAT.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 171 (= 174 in LOI2 for 3D state)
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (18I5)
IANI= 0, isotropic permeability case
≠ 0, anisotropic permeability case
IKWformulation index for $k_w$
IKAformulation index for $k_a$
ISRWformulation index for $S_W$
ITHERMformulation index for $\Gamma_T$
IVAP= 0 if no vapour diffusion in the problem
= 1 else
IFORM= 1 tangent formulation \[ \left\{\begin{array}{l}f_{we} = \dot{M}_w = (\dot{\varepsilon}_v S_w + n S_w\frac{\dot{\rho}_w}{\chi_w} + n \dot{S}_w) \rho_w \\ f_{ae} = \dot{M}_a = (\dot{\varepsilon}_V S_a + n S_a\frac{\dot{p}_a}{p_a} + n \dot{S}_a) \rho_a \end{array}\right. \]
= 0 secant formulation \[ \left\{\begin{array}{l} f_{we} = \dot{M}_w = (n^BS_w^B\rho_w^B - n^AS_w^A\rho_w^A)/\Delta t \\ f_{ae} = \dot{M}_a = (n^BS_a^B\rho_a^B - n^AS_a^A\rho_a^A)/\Delta t \end{array}\right. \]
ICONV= 0 if no convectif term in the heat transport problem
= 1 else
ITEMOIN= 0 if analytic matrix (can be used only if IVAP = 0 if no vapour diffusion in the problem)
= 1 if semi-analytic matrix (can be used in all the problems)
IKRN= 1 if Kozeni-Karmann formulation
= 2, GDR Momas relation $K=f(n)$
= 3 Coupling permeability-deformation $K=f(\varepsilon_n)$ (only in 2D)
IGAS= 0 if gas is air
= 1 if gas is $H_2$
= 2 if gas is $N_2$
= 3 if gas is Ar
= 4 if gas is He
= 5 if gas is $CO_2$
IENTH= 0 if we define $\rho$ and $C_p$ for each constituent \[\left\{\begin{array}{l}H_w = N.S_{r,w} \rho_w c_{p,w} (T-T_0) \\ H_v = n(1-S_{r,w})\rho_v c_{p,v} (T-T_0)\\ H_a = n(1-S_{r,w})\rho_ac_{p,a} (T-T_0)\\ H_{a-d} = n S_{r,w} H\rho_ac_{p,a} (T-T_0)\\ H_s = (1-n)\rho_s c_{p,s} (T-T_0) \end{array}\right.\]
= 1 if we define $\rho C_p$ equivalent for the medium and constant \[H_m = \rho C_p (T-T_0)\]
= 2 if we define $\rho C_p$ equivalent for the medium depending on temperature: \[\left\{\begin{array}{l} \rho C_p = RHOC1\ \text{if }\ T>T_u \\ \rho C_p = RHOC2\ \text{if }\ T<T_f \\ \rho C_p = \frac{RHOC1-RHOC2}{T_u-T_f}(T-T_u) + RHOC1\ \text{if }\ T_f\leq T \leq T_u\\ \end{array} \right.\] \[T_u = CLT3\] \[T_f = CLT4\]
IANITH= 0, isotropic conductivity case
= 1, anisotropic conductivity case
IVISCW= 0, $\mu_w = \mu_{w,0}\left( 1-ALPHW0(T-T_0)) \right)$
= 1, $\mu_w = 0.6612(T-229)^{-1.562}$
IXHIW = 0, constant water compressibility
= 1, $\chi_w = \chi_w + \frac{H}{p_a}$ ( $p_a$ is partial pressure of air and H is Henry coefficient)
IDIFF= 0, with diffusion of dissolved air
≠ 0, divisor (integer becomes real) of diffusion coefficient of dissolved air
ISTRUCT= 0, constant permeability
= 1, permeability depends on microstructure evolution
ICOAL= 0, solid conductivity: $\Gamma_s = \Gamma_{s,0}(1+GAMS0(T-T_0))$
= 1, solid conductivity: $\Gamma_s = \Gamma_{s,0}GAMS0(T-T_0)^3$

Real parameters: permeabilities definition

The permeability $k_f$ is an \underline{intrinsic} permeability ($\left[L^2\right]$) $\boxed{ \begin{array}{l} k_{f, intrinsic} = K_f \frac{\mu_f}{\rho_f g}\\ \left[ L^2 \right] = \left[ LT^{-1} \right] \frac{ \left[ ML^{-1}T^{-1}\right]}{\left[ML^{-3}\right]\left[LT^{-2}\right]} \end{array}}$

If IANI ≠ 0 (4G10.0) - Repeated IANI times
PERME(I)soil anisotropic int. permeability ($k_f$) in the direction I
COSX(I)director cosinus of the direction I
(in 3d state)
COSY(I)
COSZ(I)

Permeabilities in different directions can be input ( $I_{max}= 10$ ).The effect of these permeabilities will be summed.

If IANI = 0 (1G10.0)
PERMEsoil isotropic intrinsic permeability ($k_f$)

Real parameters

Line 1 (5G10.0)
POROSsoil porosity $(= n)$
TORTUsoil tortuosity $(=\tau )$
T0definition temperature $(=T_0)\ \left[K\right]$
PW0definition liquid pression $(=p_{w,0})\ \left[Pa\right]$
PA0definition gaz pression $(=p_{a,0})\ \left[Pa\right]$
Line 2 (7G10.0)
VISCW0liquid dynamic viscosity $(=\mu_{w,0}\ \left[ Pa.s \right]$
ALPHW0liquid dynamic viscosity thermal coefficient $(=\alpha_{w}^T)\ \left[K^{-1}\right]$
RHOW0
UXHIW0liquid compressibility coefficient $(=1/ \chi_{w})\ \left[ Pa^{-1}\right]$
BETAW0liquid thermal expansion coefficient $(=\beta{w}^T\ \left[K^{-1}\right]$
CONW0liquid thermal conductivity $(=\Gamma_{w,0})\ \left[W.m^{-1}.K^{-1}\right]$
GAMW0liquid thermal conductivity coefficient $(=\gamma_{w}^T\ \left[K^{-1}\right]$
Line 3 (3G10.0)
CPW0liquid specific heat $(=c_{p,w0})\ \left[J.kg^{-1}.K^{-1}\right]$
HEATW0liquid specific heat coefficient $(=H_{w}^T)\ \left[K^{-1}\right]$
EMMAGstorage coefficient $(=E_s)\ \left[ P_a^{-1}\right]$
Line 4 (7G10.0)
VISCA0
ALPHW0gaz dynamic viscosity thermal coefficient$(=\alpha_{a}^T)\ \left[K^{-1}\right]$
RHOA0gaz density$(=\rho_{a,0})\ \left[kg.m^{-3}\right]$
CONA0gaz thermal conductivity $(=\Gamma_{a,0})\ \left[W.m^{-1}.K^{-1}\right]$
GAMA0gaz thermal conductivity coefficient $(=\gamma_{a}^T)\ \left[K^{-1}\right]$
CPA0gaz specific heat $(=c_{p,a0})\ \left[J.kg^{-1}.K^{-1}\right]$
HEATA0gaz specific heat coefficient $(=H_{a}^T)\ \left[K^{-1}\right]$
Line 5 (5G10.0)
BETAS0solid thermal expansion coefficient $(=\beta_{s}^T)\ \left[K^{-1}\right]$
CONS0solid thermal conduction$(=\Gamma_{s,0})\ \left[W.m^{-1}.K^{-1}\right]$
GAMS0solid conduction coefficient $(=\gamma_{s}^T)\ \left[K^{-1}\right]$
CPS0solid specific heat $(=c_{p,s0})\ \left[J.kg^{-1}. K^{-1}\right]$
HEATS0solid specific heat coefficient $(=H_{s}^T)\ \left[ K^{-1}\right]$
Line 6 (3G10.0)
CKW11st coefficient of the function $k_{rw}$
CKW22nd coefficient of the function $k_{rw}$
CKW33rd coefficient of the function $k_{rw}$
Line 7 (3G10.0)
CKA11st coefficient of the function $k_{ra}$
CKA22nd coefficient of the function $k_{ra}$
CSR55th coefficient of the function $S_w$
Line 8 (7G10.0/)
CSR11st coefficient of the function $S_w$
CSR22nd coefficient of the function $S_w$
CSR33rd coefficient of the function $S_w$
CSR44th coefficient of the function $S_w$
SRESresidual saturation degree $(=S_{res})$
SRFIELDfield saturation degree $(=S_{r, field})$
AIREVair entry value $\left[Pa\right]$
Line 9 (7G10.0)
CLT11st coefficient of the function $\Gamma_T$
CLT22nd coefficient of the function $\Gamma_T$
CLT33rd coefficient of the function $\Gamma_T$
CLT44th coefficient of the function $\Gamma_T$
RHOCcoefficient for enthalpie $\rho C_p$ (if ienth = 1)
RHOC11st coefficient for enthalpie $\rho C_p$ (if ienth = 2)
RHOC22nd coefficient for enthalpie $\rho C_p$ (if ienth = 2)
Line 10 (4G10.0)
KRMINMinimum value of $kr$
HENRYHenry coefficient
EXPMfor IKRN=1: $m$ Exponent of Kozeni-Karmann formulation
for IKRN=3 : A parameter
EXPNn Exponent of Kozeni-Karmann formulation
Line 11 - Only if IANITH ≠ 0 (4G10.0) - Repeat IANITH times
CONDUC(I)soil anisotropic conductivity in the direction I
COSX(I)director cosinus of the direction I
(in 3d state)
COSY(I)
COSZ(I)
Thermal conductivities in different directions can be input (Imax = 10). The effect of these conductivities will be summed. In that case of anisotropic conductivity, conductivities remain constants for each direction: coefficients ITHERM, CLT1, CLT2, CLT3, CT4, CONS0, CONW0, and CONA0 are so not used in that case
If IANITH = 0: nothing
Isotropic thermal conductivity is already defined by preceding coefficients ITHERM, CLT1, CLT2, CLT3, CT4, CONS0, CONW0, CONA0 …

Following empirical formulations for describing the evolution of the relative permeability, the thermal conductivity and saturation with the suction are possible: see Appendix 8. For any suction lower than air entry value (AIREV), the saturation is equal to SRFIELD value.
Kozeny Karman formulation: \[K = C_0 \frac{n^{EXPN}}{(1-n)^{EXPM}}\] $C_0$ is computed automatically from $C_0 = K_0 \frac{(1-n_0)^{EXPM}}{(n_0)^{EXPn}}$
GDR Momas formulation: \[ \frac{k}{k_0} = 1+EXPM\left[ \phi - \phi_0\right]^{EXPN}\ \text{où}\ EXPM = 2.10^{12}\ \text{et}\ EXPN = 3 \]

Coupling permeability-deformation formulation: (only in 2D) \[ K_{ij} = \sum_n K_n^0 (1+A\varepsilon_n^T)^3\beta_{ij} (\alpha_n) \] $\varepsilon_n^T$ tensile deformation
$\alpha_n$ crack orientation with horizontal
$A$ parameter of the crack

Stresses

Number of stresses

24

Meaning

In 2D state :

SIG(1)liquid velocity in the X direction $(=f_{wx})$
SIG(2)liquid velocity in the Y direction $(=f_{wy})$
SIG(3)liquid velocity stored $(=f_{we})$
SIG(4)none
SIG(5)gas total velocity in the X direction $(=f_{ax})$gas advection +
gas diffusion +
dissolved gas advection +
dissolved gas diffusion
SIG(6)gas total velocity in the Y direction $(=f_{ay})$
SIG(7)gas total velocity stored $(=f_{ae})$
SIG(8)none
SIG(9)conductive heat flow in the X direction $(=f_{tx})$
SIG(10)conductive heat flow in the Y direction $(=f_{ty})$
SIG(11)energy accumulated by heat capacity $(=f_{te})$
SIG(12)none
SIG(13)Water vapour velocity in the X direction $(=f_{vx})$
SIG(14)Water vapour velocity in the Y direction $(=f_{vy})$
SIG(15)Water vapour stored $(=f_{ve})$
SIG(16)none
SIG(17)dissolved gas advection and diffusion velocity in the X direction
SIG(18)dissolved gas advection and diffusion velocity in the Y direction
SIG(19)dissolved gas advection and diffusion velocity stored
SIG(20)none
SIG(21)dissolved gas diffusion velocity in the X direction
SIG(22)dissolved gas diffusion velocity in the Y direction
SIG(23)dissolved gas and diffusion velocity stored
SIG(24) none

In 3D state :

SIG(1)liquid velocity in the X direction $(=f_{wx})$
SIG(2)liquid velocity in the Y direction $(=f_{wy})$
SIG(3)liquid velocity in the Z direction $(=f_{wz})$
SIG(4)liquid velocity stored $(=f_{we})$
SIG(5)gas total velocity in the X direction $(=f_{ax})$gas advection +
gas diffusion +
dissolved gas advection +
dissolved gas diffusion
SIG(6)gas total velocity in the Y direction $(=f_{ay})$
SIG(7)gas total velocity in the Z direction $(=f_{az})$
SIG(8)gas total velocity stored $(=f_{az})$
SIG(9)conductive heat flow in the X direction $(=f_{tx})$
SIG(10)conductive heat flow in the Y direction $(=f_{ty})$
SIG(11)conductive heat flow in the Z direction $(=f_{tz})$
SIG(12)energy accumulated by heat capacity $(=f_{te})$
SIG(13)Water vapour velocity in the X direction $(=f_{yx})$
SIG(14)Water vapour velocity in the Y direction $(=f_{yy})$
SIG(15)Water vapour velocity in the Z direction $(=f_{yz})$
SIG(16)Water vapour stored $(=f_{ye})$
SIG(17)dissolved gas advection and diffusion velocity in the X direction
SIG(18)dissolved gas advection and diffusion velocity in the Y direction
SIG(19)dissolved gas advection and diffusion velocity in the Z direction
SIG(20)dissolved gas advection and diffusion velocity stored
SIG(21)dissolved gas diffusion velocity in the X direction
SIG(22)dissolved gas diffusion velocity in the Y direction
SIG(23)dissolved gas diffusion velocity in the Z direction
SIG(24)dissolved gas and diffusion velocity stored

State variables

Number of state variables

= 26 in 2D cases
= 16 in 3D cases

List of state variables

Q(1)water relative permeability $(=k_{rw})$
Q(2)air relative permeability $(=k_{ra})$
Q(3)Soil porosity (= n)
Q(4)Soil saturation degree $(=S_w)$
Q(5)Suction $(=p_c = p_a-p_w)$
Q(6)water specific mass $(=\rho_w)$
Q(7)air specific mass $(=\rho_a)$
Q(8)“Pe number” = convective effect / conductive effect \[= \frac{\rho_f . c_f . T . \vec{q}}{\Gamma_{av} . \vec{grad} (T)}\]
Q(9)Water content (=w)
Q(10)Vapour specific mass $(=\rho_v)$
Q(11)Vapour pressure $(=p_v)$
Q(12)Relative humidity $(=H_r)$
Q(13)Liquid water mass per unit soil volume
Q(14)Dry air mass per unit soil volume
Q(15)Vapour mass per unit soil volume
Q(16)Intrinsic permeability
Q(17)Gas soil saturation degree $(=S_g)$
Q(18)$\alpha (H_2, N_2, …)$ partial pressure $(=p_a^g = p^g - p_{H_2O}^g = \text{gas pressure-vapour pressure})$
Q(19)Area associated to one integration point
Q(20)Dissolved air concentration $=\frac{\rho_{a-d}}{\rho_w + \rho_{a-d}} = \frac{H_a \rho_a}{\rho_w + H_a \rho_a}$
Q(21)$K_{xx}$ (or zero if IANI = 0)
Q(22)$K_{yy}$ (or zero if IANI = 0)
Q(23)$K_{xy}$ (or zero if IANI = 0)
Q(24)$\varepsilon_1$
Q(25)$\varepsilon_2$
Q(26)$\alpha$ (= angle between principal stress and horizontal)
laws/wavat.txt · Last modified: 2023/12/12 16:47 by gilles