User Tools

Site Tools


laws:epsuctsol

EP-SUCTSOL

Description

Cap model : élastomère-plastic constitutive law for solid elements at constant temperature with effect of suction and temperature.

The model

This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains.

Files

Prepro: LSUCT.F
Lagamine: SUCT2EA.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 68
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (13I5)
NINTV > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : NINTV will be calculated in the law with DIV=$5.10^{-3}$
ISOL = 0 : Use of total stresses in the constitutive law
$\neq$ 0 : Use of effective stresses in the constitutive law. See appendix 8
IELA = 0 : Linear elasticity
> 0 : Non-linear elasticity
IELAS= 0 : Constant KAPPAS
> 0 : Variable KAPPAS
ILODEF Shape of the yield surface in the deviatoric plane
= 1 : Circle in the deviatoric plane 
= 2 : Smoothed irregular hexagon in the deviatoric plane 
ILODEG Not used : Associated plasticity 
ITRACT = 0 : No traction limitation
$\neq$ 0 : Traction stresses limitation
IECPS = 0 : $\Psi$ is defined with PSIC and PSIE 
= 1 : $\Psi$ is defined with PHMPS
ICBIF Computation indice of bifurcation criterion
= 0 : Non computed 
= 1 : Computed (plane strain state only) 
KMETH= 2 : Actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value) 
IPCONS = 0 : Definition of pre-consolidation pressure
$\neq$ 0 : Definition of OCR 
IDUJE = 1 : Use Hueckel's thermal soften function to perform the calculation
= 2 : Use Yujun C. exponential formulation (need to be check further)
ISR Index for calculate the saturation 

Real parameters

Line 1 (5G10.0)
E_PAR1 First elastic parameter
E_PAR2 Second elastic parameter
E_PAR3 Third elastic parameter
E_PAR4 Fourth elastic parameter
HARD Hardening parameter
Line 2 (6G10.0)
PCONS0 Pre-consolidation pressure (if PCONS0=0)
OCR Over Consolidation Ratio (if PCONS0$\neq$0, see section 6.5)
AI1MIN Minimum value of I$_{sigma}$ for non-linear elasticity
PSIC Coulomb's angle (in degrees) for compressive paths
PSIE Coulomb's angle (in degrees) for extensive paths
PHMPS Van Eekelen exponent (default value=-0.229)
Line 3 (6G10.0)
PHIC0 Initial Coulomb's angle (in degrees) for compressive paths
PHICF Final Coulomb's angle (in degrees) for compressive paths
BPHI Only if there is hardening/softening
PHIE0 Initial Coulomb’s angle (in degrees) for extensive paths
PHIEF Final Coulomb’s angle (in degrees) for extensive paths (iff ILODEF = 2)
AN Van Eekelen exponent (default value=-0.229)
Line 4 (4G10.0)
COH0 Initial value of cohesion
COHF Final value of cohesion
BCOH Only if there is hardening/softening
TRACTION Limit of the traction stress (only if ITRACT$\neq$0)
Line 5 (3G10.0)
POROS Initial soil porosity ($n_0$)
RHO Specific mass
DIV Parameter for the computation of NINTV in the law (for NINTV = 0 only)
Line 6 (7G10.0)
S0 Yield limit in term of suction (SI curve)
PCrel Relative Reference pressure PCONS0/PC for the definition of the LC curve
RRATIO
BETA
LAMBDA-S Plastic suction coefficient
KAPPA-S Elastic suction coefficient
PATM Atmospheric pressure
Line 7 (3G10.0)
k
AKAPPAS1 First parameter of KAPPAS formulation
AKAPPAS2 Second parameter of KAPPAS formulation
Line 8 (5G10.0)
PARAA1 1st parameter for calculating the thermal soften function
PARAA2 2nd parameter for calculating the thermal soften function \[p_0^*\left(\varepsilon_{\nu}^p\;,\;\Delta T\right) = p_0^*\left(\varepsilon_{\nu}^p\right)+A(\Delta T)\]\[A(\Delta T) = a_1\; \Delta T + a_2\;\Delta T\;\rvert\Delta T\rvert\]
ALPHA2 Parameter for calculating the thermal elastic strain \[\dot{\varepsilon}^{e,T}=\alpha_2\;\dot{T}\]
TEMPR Reference temperature
TEMP0 Yield limit temperature
Line 9 (4G10.0)
SRES Residual saturation
PSUCA Parameter to calculate the variation of Suction Increase
PSUCB Parameter to calculate the variation of Suction Increase
KPARAM Parameter to calculate the variation of Suction Increase
Line 10 (8G10.0)
CSW1 1st coefficient of the function $S_w$
CSW2 2nd coefficient of the function $S_w$
CSW3 3rd coefficient of the function $S_w$
ERATIO Initial Void Ratio
CSW4 4th coefficient of the function $S_w$
SRES Residual saturation degree (=$S_{res}$)
SRFIELD Field saturation degree (=$S_{r,field}$)
AIREV Air entry value [Pa]

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

36 for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
24 : in all the other cases

List of state variables

Q(1) = 1 in plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) Actualised specific mass
Q(3) = 0 if the current state is elastic
= 1 if the current state is elasto-plastic (Friction mechanism)
= 2 if the current state is elasto-plastic (Pore collapse mechanism)
= 3 if the current state is elasto-plastic (Traction mechanism)
= 4 if the current state is elasto-plastic (Friction + pore mechanisms)
= 5 if the current state is elasto-plastic (Friction + traction mechanisms)
Q(4) Actualised value of temperature
Q(5) Actualised value of porosity
Q(6) Equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\;\Delta t$
Q(7) Updated value of preconsolidation pressure $p_0$
Q(8) Equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\;\Delta t}{\varepsilon_{eq1}}$
Q(9) X deformation
Q(10) Y deformation
Q(11)Z deformation
Q(12) XY deformation
Q(13) Volumetric strain
Q(14) Deviatoric strain
Q(15) Actualised value of cohesion
Q(16) Actualised value of frictional angle in compression path ($\phi_C$)
Q(17) Actualised value of frictional angle in extension path ($\phi_E$)
Q(18) Apex criterion
Q(19) Actualised value of ALAMBDAS
Q(20) Actualised value of AKAPPAS
Q(21) Actualised value of $S_0$
Q(22) Number of sub-intervals used for the integration
Q(23) Number of iteration used for the integration
Q(24) Memory of localisation calculated during the re-meshing
Q(25)$\rightarrow$Q(36) Reserved for bifurcation

Hardening forms

ITYLA = 2 : Volumetric strain hardening \[dp_0 = -ECRO\;p_0\;\varepsilon_{v}^p\] where the sign is dependent on the consolidation stress and softening is possible.

Elastic forms

IELA = 0 : Linear elasticity

E_PAR1 = E : Young's Elastic modulus
E_PAR2 = ANU : Poisson's ratio
E_PAR3 Not used
E_PAR4 Not used
HARD = ECRO : Hardening parameter

IELA = 1 : Non-linear elasticity

E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = ANU : Poisson's ratio
E_PAR3 Not used
E_PAR4 Not used
HARD = LAMBDA : Plastic slope in oedometer path

\[ECRO = \frac{1+e_0}{\lambda-\kappa}\]

IELA = 2 : Non-linear elasticity

E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = G0 : Shear modulus
E_PAR3 Not used
E_PAR4 Not used
HARD = LAMBDA : Plastic slope in oedometer path

\[ECRO = \frac{1+e_0}{\lambda-\kappa}\]

IELA = 3 : Non-linear elasticity

E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = K0 : Minimum value of the bulk modulus
E_PAR3 = G0 : Shear modulus
E_PAR4 = ALPHA2
HARD = LAMBDA : Plastic slope in oedometer path

\[ECRO = \frac{1+e_0}{\lambda-\kappa}\]

IELA = 4 : Non-linear elasticity

E_PAR1 = K0: Minimum value of the bulk modulus
E_PAR2 = n : n parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD

ECRO = HARD

IELA = 5 : Non-linear elasticity

E_PAR1 = $\nu$ : Poisson’s ratio
E_PAR2 = n : n parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD

ECRO = HARD

IPCONS parameter

IPCONS = 0 : $p_0$ = PCONS0
IPCONS = 1 : $p_0$ = $\sigma_v$ . OCR
IPCONS = 2 : $p_0$ = $p_0$($\sigma$, cohesion, $\phi$) . OCR

Where : $p_0$($\sigma$, cohesion, $\phi$) = $\left[\dfrac{-II_{\hat{\sigma}}^2}{m^2\left(I_{\sigma}-\frac{3c}{\tan\phi}\right)}-I_{\sigma}\right]/3$

laws/epsuctsol.txt · Last modified: 2020/08/25 15:46 (external edit)