User Tools

Site Tools


laws:bbm

BBM

Barcelona Basic Model

Description

Full law name : ALONSO-GENS BBM

An elasto-plastic constitutive law for saturated or partially saturated soils based on the CAMCLAY-type model.

It can take into account:

  • the influence of the LODE angle;
  • linear or non-linear elasticity;
  • non-associated plasticity;
  • the elasto-plasticity induced by the suction.

The model

This law is used for mechanical analysis of saturated and partially saturated elasto-plastic isotropic porous media undergoing suction changes.

Hardening forms

Elasticity

IELAP Expression Parameters
0 \[\kappa=\kappa_0\] $\kappa_0$ = KAPPA0
1 \[\kappa = \kappa_0\left[1+\alpha_1.s+\alpha_2.\ln\left(\frac{s+u_{atm}}{u_{atm}}\right)\right]\] $\kappa_0$ = KAPPA0 
$\alpha_1$ = KAPPA1
$\alpha_2$ = KAPPA2
IELAS Expression Parameters
0 \[\kappa_s=\kappa_{s0}\] $\kappa_{s0}$ = KAPPAS0
1 \[\kappa_s = \kappa_{s0}\left[1+\alpha_p.\ln\left(\frac{p}{u_{atm}}\right)\right].\exp(\alpha_s.s)\]  $\kappa_{s0}$ = KAPPAS0
$\alpha_p$ = KAPPAS1
$\alpha_s$ = KAPPAS2
$u_{atm}$ = PATM
2 Not defined
3 \[\kappa_s = \kappa_{s0}.(1-\alpha_s.s)\] $\kappa_{s0}$ = KAPPAS0
$\alpha_s$ = KAPPAS2
4 \[\kappa_s = \kappa_{s0}.\exp(-\alpha_p.p)\]  $\kappa_{s0}$ = KAPPAS0
$\alpha_p$ = KAPPAS1
5 \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } s>s^* \\ \kappa_{res} & \quad \text{if } s\leq s^*\end{cases}\]  $\kappa_{s0}$ = KAPPAS0
$\kappa_{res}$ = KAPPAS1
$s^*$ = KAPPAS2
6 \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } S_r\leq S_r^* \\ \kappa_{s0}(1-S_r)^{\gamma_{\kappa_s}}& \quad \text{if } S_r>S_r^*\end{cases}\]  $\kappa_{s0}$ = KAPPAS0
$\gamma_{\kappa_s}$ = KAPPAS1
$S_r^*$ = KAPPAS2
7 \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } S_r\leq S_r^* \\ \kappa_{res} & \quad \text{if } S_r>S_r^*\end{cases}\]  $\kappa_{s0}$ = KAPPAS0
$\kappa_{res}$ = KAPPAS1
$S_r^*$ = KAPPAS2

Yield surfaces

Files

Prepro: LBBM.F
Lagamine: BBMPIL.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 812
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (16I5)
NINTV > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : NINTV will be calculated in the law with DIV
ISOL = 0 : Use of total stresses $\sigma_{t,ij}$ in the constitutive law
= 6 : Use of net stresses $\sigma_{ij}$ in the constitutive law. The net stresses are defined as \[\sigma_{ij}=\sigma_{t,ij}-\max(u_a,u_w)\;\delta_{ij}\] with $u_a$ and $u_w$ the air and water pressures and $\delta_{ij}$ the Kronecker delta
IELA
(used in BBMELA)
= 0 : Non-linear elasticity \[K = \frac{1+e}{\kappa}.p\quad\text{and}\quad G=\frac{3}{2}.\frac{1-2\nu}{1+\nu}.K\]
= 1 : Non-linear elasticity \[K = \frac{1+e}{\kappa}.p\quad\text{and}\quad G=G_0\]
IELAP
(used in BBMELA)
= 0 : Constant KAPPA ($\kappa$)
> 0 : Variable KAPPA ($\kappa$)
= 1 : $\kappa = \kappa_0\left[1+\alpha_1. s + \alpha_2. \ln\left(\frac{s+u_{atm}}{u_{atm}}\right)\right]$
IELAS
(used in BBMINT)
= 0 : Constant KAPPAS ($\kappa_s$)
> 0 : Variable KAPPAS ($\kappa_s$)
= 1 : $\kappa_s = \kappa_{s0}\left[1+\alpha_p.\ln\left(\frac{p}{u_{atm}}\right)\right].\exp(\alpha_s.s)$
= 2 : Not defined
= 3 : $\kappa_s = \kappa_{s0}.(1-\alpha_s.s)$
= 4 : $\kappa_s = \kappa_{s0}.\exp(-\alpha_p.p)$
= 5 : if $s\leq s^*$ : $\kappa_s = \kappa_{res}$, else : $\kappa_s=\kappa_{s0}$
= 6 : if $S_r>S_r^*$ : $\kappa_s=\kappa_{s0}(1-S_r)^{\gamma_{\kappa_s}}$, else : $\kappa_s=\kappa_{s0}$
= 7 : if $S_r>S_r^*$ : $\kappa_s=\kappa_{res}$, else : $\kappa_s=\kappa_{s0}$
IVOID = 0 : Initial void ratio
= 1 : Updated void ratio
ILC Shape of the LC curve in the $p-s$ plane
= 0 : Original formulation (Alonso et al., 1990)
= 1 : Modified version for $S_r^*$ (Dieudonné, 2016)
IDEV Shape of the LC curve in the $p–q$ plane
= 0 : Original formulation (Alonso et al., 1990)
ICS Increase in cohesion with suction
= 0 : Original formulation (Alonso et al., 1990)
IASSOC = 0 : Non-associated plasticity (Alonso et al., 1990)
= 1 : Associated plasticity
ILODEF Shape of the yield surface in the deviatoric plane
= 0 : Circle in the deviatoric plane
= 1 : Smoothed irregular hexagon in the deviatoric plane
ILODEG Shape of the flow surface in the deviatoric plane (meaningful if IASSOC$\neq$1)
= 0 : Circle in the deviatoric plane
= 1 : Smoothed irregular hexagon in the deviatoric plane

Real parameters

Line 1 (3G10)
POROS0 Initial porosity
RHO Solid specific mass
DIV Parameter for the computation of NINTV in the law (for NINTV=0 only)
Line 2 (5G10)
KAPPA0 1st elastic parameter (relative to changes in stress)
KAPPA1 2nd elastic parameter (relative to changes in stress)
KAPPA2 3rd elastic parameter (relative to changes in stress)
NUG Poisson’s ratio $\nu$ (if IELA = 0)
Shear modulus G (if IELA = 1)
AI1MIN Minimum value of $I_{\sigma}$ for non-linear elasticity
Line 3 (6G10)
COH Value of cohesion in saturated conditions
COH_PAR1 1st parameter for the evolution of cohesion with suction
COH_PAR2 2nd parameter for the evolution of cohesion with suction
PHIC Friction angle (in degrees) for compressive paths
PHIE Friction angle (in degrees) for extensive paths (only if ILODEF=2)
AN Van Eekelen exponent (default value = -0.229)
Line 4 (6G10)
LAMBDA0 Plastic coefficient in saturated conditions
P0ST Pre-consolidation pressure in saturated conditions
PCrel Relative reference pressure P0ST/PC for the definition of the LC curve
LC_PAR1 1st parameter of the LC curve
LC_PAR2 2nd parameter of the LC curve
LC_PAR3 3rd parameter of the LC curve
Line 5 (6G10)
KAPPAS0 1st elastic parameter (relative to changes in suction)
KAPPAS1 2nd elastic parameter (relative to changes in suction)
KAPPAS2 3rd elastic parameter (relative to changes in suction)
LAMBDAS Plastic suction coefficient
PATM Atmospheric pressure
S0 Yield limit in term of suction (SI curve)

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

25 in all the other cases

List of state variables

Q(1) = 1 : Plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetric state
Q(2) Specific mass
Q(3) Porosity
Q(4) Suction
Q(5) = 0 if the current state is elastic
= 1 if the current state is elasto-plastic (LC)
= 2 if the current state is elasto-plastic (SI)
= 12 if the current state is elasto-plastic (LC + SI)
Q(6) Pre-consolidation pressure $p_0$ in saturated conditions
Q(7) Current pre-consolidation pressure $p_0$
Q(8) Maximum suction $s_0$ 
Q(9) Apparent cohesion
Q(10) Apparent resistance in extension
Q(11) Elastic slope relative to changes in pressure ($\kappa$)
Q(12) Cubic modulus (K)
Q(13) Shear modulus (G)
Q(14) Elastic slope relative to changes in pressure ($\kappa_s$)
Q(15) Plastic slope relative to changes in pressure ($\lambda(s)$)
Q(16) X deformation
Q(17) Y deformation
Q(18) Z deformation
Q(19) XY deformation
Q(20) Volumetric strain
Q(21) Deviatoric strain
Q(22) Number of sub-intervals used for the integration
Q(23) Number of iteration used for the integration
Q(24) Equivalent strain indicator $\alpha = \Delta\dot{\varepsilon}_{vol}\;\Delta t/\varepsilon_{vol}$
Q(25) = 0 if elastic, 1 if softening, 2 if hardening
laws/bbm.txt · Last modified: 2024/06/20 16:35 by maximilian