Barcelona Basic Model
Full law name : ALONSO-GENS BBM
An elasto-plastic constitutive law for saturated or partially saturated soils based on the CAMCLAY-type model.
It can take into account:
This law is used for mechanical analysis of saturated and partially saturated elasto-plastic isotropic porous media undergoing suction changes.
Elasticity
IELAP | Expression | Parameters |
0 | \[\kappa=\kappa_0\] | $\kappa_0$ = KAPPA0 |
1 | \[\kappa = \kappa_0\left[1+\alpha_1.s+\alpha_2.\ln\left(\frac{s+u_{atm}}{u_{atm}}\right)\right]\] | $\kappa_0$ = KAPPA0 $\alpha_1$ = KAPPA1 $\alpha_2$ = KAPPA2 |
IELAS | Expression | Parameters |
0 | \[\kappa_s=\kappa_{s0}\] | $\kappa_{s0}$ = KAPPAS0 |
1 | \[\kappa_s = \kappa_{s0}\left[1+\alpha_p.\ln\left(\frac{p}{u_{atm}}\right)\right].\exp(\alpha_s.s)\] | $\kappa_{s0}$ = KAPPAS0 $\alpha_p$ = KAPPAS1 $\alpha_s$ = KAPPAS2 $u_{atm}$ = PATM |
2 | Not defined | |
3 | \[\kappa_s = \kappa_{s0}.(1-\alpha_s.s)\] | $\kappa_{s0}$ = KAPPAS0 $\alpha_s$ = KAPPAS2 |
4 | \[\kappa_s = \kappa_{s0}.\exp(-\alpha_p.p)\] | $\kappa_{s0}$ = KAPPAS0 $\alpha_p$ = KAPPAS1 |
5 | \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } s>s^* \\ \kappa_{res} & \quad \text{if } s\leq s^*\end{cases}\] | $\kappa_{s0}$ = KAPPAS0 $\kappa_{res}$ = KAPPAS1 $s^*$ = KAPPAS2 |
6 | \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } S_r\leq S_r^* \\ \kappa_{s0}(1-S_r)^{\gamma_{\kappa_s}}& \quad \text{if } S_r>S_r^*\end{cases}\] | $\kappa_{s0}$ = KAPPAS0 $\gamma_{\kappa_s}$ = KAPPAS1 $S_r^*$ = KAPPAS2 |
7 | \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } S_r\leq S_r^* \\ \kappa_{res} & \quad \text{if } S_r>S_r^*\end{cases}\] | $\kappa_{s0}$ = KAPPAS0 $\kappa_{res}$ = KAPPAS1 $S_r^*$ = KAPPAS2 |
Yield surfaces
Prepro: LBBM.F
Lagamine: BBMPIL.F
Plane stress state | NO |
Plane strain state | YES |
Axisymmetric state | YES |
3D state | NO |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 812 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (16I5) | |
---|---|
NINTV | > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step |
= 0 : NINTV will be calculated in the law with DIV | |
ISOL | = 0 : Use of total stresses $\sigma_{t,ij}$ in the constitutive law |
= 6 : Use of net stresses $\sigma_{ij}$ in the constitutive law. The net stresses are defined as \[\sigma_{ij}=\sigma_{t,ij}-\max(u_a,u_w)\;\delta_{ij}\] with $u_a$ and $u_w$ the air and water pressures and $\delta_{ij}$ the Kronecker delta | |
IELA (used in BBMELA) | = 0 : Non-linear elasticity \[K = \frac{1+e}{\kappa}.p\quad\text{and}\quad G=\frac{3}{2}.\frac{1-2\nu}{1+\nu}.K\] |
= 1 : Non-linear elasticity \[K = \frac{1+e}{\kappa}.p\quad\text{and}\quad G=G_0\] | |
IELAP (used in BBMELA) | = 0 : Constant KAPPA ($\kappa$) |
> 0 : Variable KAPPA ($\kappa$) | |
= 1 : $\kappa = \kappa_0\left[1+\alpha_1. s + \alpha_2. \ln\left(\frac{s+u_{atm}}{u_{atm}}\right)\right]$ | |
IELAS (used in BBMINT) | = 0 : Constant KAPPAS ($\kappa_s$) |
> 0 : Variable KAPPAS ($\kappa_s$) | |
= 1 : $\kappa_s = \kappa_{s0}\left[1+\alpha_p.\ln\left(\frac{p}{u_{atm}}\right)\right].\exp(\alpha_s.s)$ | |
= 2 : Not defined | |
= 3 : $\kappa_s = \kappa_{s0}.(1-\alpha_s.s)$ | |
= 4 : $\kappa_s = \kappa_{s0}.\exp(-\alpha_p.p)$ | |
= 5 : if $s\leq s^*$ : $\kappa_s = \kappa_{res}$, else : $\kappa_s=\kappa_{s0}$ | |
= 6 : if $S_r>S_r^*$ : $\kappa_s=\kappa_{s0}(1-S_r)^{\gamma_{\kappa_s}}$, else : $\kappa_s=\kappa_{s0}$ | |
= 7 : if $S_r>S_r^*$ : $\kappa_s=\kappa_{res}$, else : $\kappa_s=\kappa_{s0}$ | |
IVOID | = 0 : Initial void ratio |
= 1 : Updated void ratio | |
ILC | Shape of the LC curve in the $p-s$ plane |
= 0 : Original formulation (Alonso et al., 1990) | |
= 1 : Modified version for $S_r^*$ (Dieudonné, 2016) | |
IDEV | Shape of the LC curve in the $p–q$ plane |
= 0 : Original formulation (Alonso et al., 1990) | |
ICS | Increase in cohesion with suction |
= 0 : Original formulation (Alonso et al., 1990) | |
IASSOC | = 0 : Non-associated plasticity (Alonso et al., 1990) |
= 1 : Associated plasticity | |
ILODEF | Shape of the yield surface in the deviatoric plane |
= 0 : Circle in the deviatoric plane | |
= 1 : Smoothed irregular hexagon in the deviatoric plane | |
ILODEG | Shape of the flow surface in the deviatoric plane (meaningful if IASSOC$\neq$1) |
= 0 : Circle in the deviatoric plane | |
= 1 : Smoothed irregular hexagon in the deviatoric plane |
Line 1 (3G10) | |
---|---|
POROS0 | Initial porosity |
RHO | Solid specific mass |
DIV | Parameter for the computation of NINTV in the law (for NINTV=0 only) |
Line 2 (5G10) | |
KAPPA0 | 1st elastic parameter (relative to changes in stress) |
KAPPA1 | 2nd elastic parameter (relative to changes in stress) |
KAPPA2 | 3rd elastic parameter (relative to changes in stress) |
NUG | Poisson’s ratio $\nu$ (if IELA = 0) |
Shear modulus G (if IELA = 1) | |
AI1MIN | Minimum value of $I_{\sigma}$ for non-linear elasticity |
Line 3 (6G10) | |
COH | Value of cohesion in saturated conditions |
COH_PAR1 | 1st parameter for the evolution of cohesion with suction |
COH_PAR2 | 2nd parameter for the evolution of cohesion with suction |
PHIC | Friction angle (in degrees) for compressive paths |
PHIE | Friction angle (in degrees) for extensive paths (only if ILODEF=2) |
AN | Van Eekelen exponent (default value = -0.229) |
Line 4 (6G10) | |
LAMBDA0 | Plastic coefficient in saturated conditions |
P0ST | Pre-consolidation pressure in saturated conditions |
PCrel | Relative reference pressure P0ST/PC for the definition of the LC curve |
LC_PAR1 | 1st parameter of the LC curve |
LC_PAR2 | 2nd parameter of the LC curve |
LC_PAR3 | 3rd parameter of the LC curve |
Line 5 (6G10) | |
KAPPAS0 | 1st elastic parameter (relative to changes in suction) |
KAPPAS1 | 2nd elastic parameter (relative to changes in suction) |
KAPPAS2 | 3rd elastic parameter (relative to changes in suction) |
LAMBDAS | Plastic suction coefficient |
PATM | Atmospheric pressure |
S0 | Yield limit in term of suction (SI curve) |
6 for 3D state
4 for the other cases
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the other cases:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{xy}$ |
SIG(4) | $\sigma_{zz}$ |
25 in all the other cases
Q(1) | = 1 : Plane strain state |
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetric state | |
Q(2) | Specific mass |
Q(3) | Porosity |
Q(4) | Suction |
Q(5) | = 0 if the current state is elastic |
= 1 if the current state is elasto-plastic (LC) | |
= 2 if the current state is elasto-plastic (SI) | |
= 12 if the current state is elasto-plastic (LC + SI) | |
Q(6) | Pre-consolidation pressure $p_0$ in saturated conditions |
Q(7) | Current pre-consolidation pressure $p_0$ |
Q(8) | Maximum suction $s_0$ |
Q(9) | Apparent cohesion |
Q(10) | Apparent resistance in extension |
Q(11) | Elastic slope relative to changes in pressure ($\kappa$) |
Q(12) | Cubic modulus (K) |
Q(13) | Shear modulus (G) |
Q(14) | Elastic slope relative to changes in pressure ($\kappa_s$) |
Q(15) | Plastic slope relative to changes in pressure ($\lambda(s)$) |
Q(16) | X deformation |
Q(17) | Y deformation |
Q(18) | Z deformation |
Q(19) | XY deformation |
Q(20) | Volumetric strain |
Q(21) | Deviatoric strain |
Q(22) | Number of sub-intervals used for the integration |
Q(23) | Number of iteration used for the integration |
Q(24) | Equivalent strain indicator $\alpha = \Delta\dot{\varepsilon}_{vol}\;\Delta t/\varepsilon_{vol}$ |
Q(25) | = 0 if elastic, 1 if softening, 2 if hardening |