User Tools

Site Tools


laws:levjet

LEV-JET

Description

An elasto‑viscoplastic constitutive law for solid elements at constant temperature ‑ Levi model.

The model

This law is used for mechanical analysis of elastoplastic isotropic element undergone large deformation.

Files

Prepro: LJETV.F
Lagamine: JETLEV.F, JT3LEV.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 57 for JET2D; 59 for JET3D
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
MLAW= the method used to calculate the increments of stress
= 0 → Radial Return method
= 1 → Implicit integration method
= 2 → Modified implicit integration method
MANA See explanation below

If MLAW = 0

MANA= 0 → The tangent matrix obtained by setting $\dot{\omega} = 0$
= 1 → The tangent matrix obtained by setting $\dot{\sigma}_{eq} = \dot{\sigma}_{eq}^{Trial}$
= 2 → The tangent matrix obtained by setting $\dot{\sigma}_{eq} \Rightarrow \dot{\varepsilon}_{eq}$

Else

MANA= 0 → The tangent matrix obtained by setting $\dot{\lambda}_{vp} = 0$
= 1 → The tangent matrix obtained by setting $\dot{\lambda}_{vp} \Rightarrow \dot{\sigma}_{eq}$
= 2 → The tangent matrix obtained by setting $\dot{\lambda}_{vp} \Rightarrow \dot{\varepsilon}_{eq}$

Real parameters

Line 1 (4G10.0)
EYOUNG's elastic modulus
< POISSON's ratio.
$A_c$ parameter for $\sigma - \dot{\varepsilon}$ relation
$A_m$ parameter for $\sigma - \dot{\varepsilon}$ relation

\[ \hat{\sigma}_{eq} = A_c \hat{D}_{eq}^{A_m} \]

Stresses

Number of stresses

= 4 : for 2D analysis
= 6 : for 3D analysis

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y) coordinates.
For the 2D analysis :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

For 3D analysis :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

State variables

Number of state variables

= 24 for 2D analysis
= 15 for 3D analysis

List of state variables

For 2D analysis:

Q(1)current yield limit in tension; its initial value is $R_e$
Q(2)equivalent plastic strain $(\bar{\varepsilon}^p)$
Q(3) equivalent VM type stress in this element.
Q(4) $\sigma_{xx}$ in local axes of the element
Q(5) $\sigma_{yy}$ in local axes of the element
Q(6) $\sigma_{zz}$ in local axes of the element
Q(7) $\sigma_{xy}$ in local axes of the element
Q(8) $\sigma_{1}$ anti‑hourglass stress
Q(9) $\sigma_{2}$ anti‑hourglass stress
Q(10to13) x nodal coordinates in local axes of the element
Q(14to17) y nodal coordinates in local axes of the element
Q(18) = 0 in plane strain state
= average radius (X coordinate) of the element in axisymmetric state
Q(19)area of the element in the XY plane
Q(20)area of the no deformed element
Q(21)X(4) ‑ X(2) in initial structure
Q(22)X(3) ‑ X(1) in initial structure
Q(23)Y(4) ‑ Y(2) in initial structure
Q(24)Y(3) ‑ Y(1) in initial structure
Q(25) = 0 - if the current stress state is elastic
= 1 - if the current stress state is plastic.

For 3D analysis:

Q(1) current yield limit tension
Q(2) equivalent plastic strain $(\bar{\varepsilon}^p)$
Q(3) equivalent VM type stress for this element.
Q(4) $\sigma_{11}$ anti‑hourglass stress
Q(5) $\sigma_{12}$ anti‑hourglass stress
Q(6) $\sigma_{13}$ anti‑hourglass stress
Q(7) $\sigma_{21}$ anti‑hourglass stress
Q(8) $\sigma_{22}$ anti‑hourglass stress
Q(9) $\sigma_{23}$ anti‑hourglass stress
Q(10) $\sigma_{31}$ anti‑hourglass stress
Q(11) $\sigma_{32}$ anti‑hourglass stress
Q(12) $\sigma_{33}$ anti‑hourglass stress
Q(13) $\sigma_{41}$ anti‑hourglass stress
Q(14) $\sigma_{42}$ anti‑hourglass stress
Q(15) $\sigma_{43}$ anti‑hourglass stress
laws/levjet.txt · Last modified: 2020/08/25 15:46 (external edit)