User Tools

Site Tools


laws:eptsoil

EP-TSOIL

Description

Cap model : elasto-plastic constitutive law for solid elements at constant temperature with thermoplasticity (A thermomechanical model of clays, CUI et al., 2000).

The model

This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains.

Files

Prepro: LTSOIL.F
Lagamine: TSOIL2EA.F, TSOIL3D.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 169
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (14I5)
NINTV > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : NINTV will be calculated in the law with DIV=$1.10^{-5}$
ISOL = 0 : Use of total stresses in the constitutive law
$\neq$ 0 : Use of effective stresses in the constitutive law. See appendix 8
IELA = 0 : Linear elasticity
> 0 : Non-linear elasticity
ILODEF Shape of the yield surface in the deviatoric plane
= 1 : Circle in the deviatoric plane
= 2 : Smoothed irregular hexagon in the deviatoric plane
ILODEG Not used : Associated plasticity
ITRACT = 0 : No traction limitation
<> 0 : Traction stresses limitation
IECPS = 0 : $\Psi$ is defined with PSIC and PSIE
= 1 : $\Psi$ is defined with PHMPS
ICBIF Computation indice of bifurcation criterion
= 0 : Non computed
= 1 : Computed (plane strain state only)
KMETH = 2 : Actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value)
IPCONS = 0 : Definition of pre-consolidation pressure
<> 0 : Definition of OCR
ILY = 0 : Evolution of the pre-consolidation pressure with temperature (ENPC, LY curve) \[p'_{cT} = p'_{c_0T_0}\exp(-\alpha_0\Delta T)\]
= 1 : Evolution of the pre)consolidation pressure with temperature (ACMEG-T) \[p'_{cT} = p'_{c_0T_0}\left[1-\gamma_T\log\left(\frac{T}{T_0}\right)\right]\]

Real parameters

Line 1 (5G10.0)
E_PAR1 First elastic parameter
E_PAR2 Second elastic parameter
E_PAR3 Third elastic parameter
E_PAR4 Fourth elastic parameter
HARD Hardening parameter
Line 2 (6G10.0)
PCONS0 Pre-consolidation pressure (if PCONS0=0)
OCR Over Consolidation Ratio (if PCONS0$\neq$0, see section 6.5)
AI1MIN Minimum value of I$_{sigma}$ for non-linear elasticity
PSIC Coulomb's angle (in degrees) for compressive paths
PSIE Coulomb's angle (in degrees) for extensive paths
PHMPS Van Eekelen exponent (default value=-0.229)
Line 3 (6G10.0)
PHIC0 Initial Coulomb's angle (in degrees) for compressive paths
PHICF Final Coulomb's angle (in degrees) for compressive paths
BPHI Only if there is hardening/softening
PHIE0 Initial Coulomb’s angle (in degrees) for extensive paths
PHIEF Final Coulomb’s angle (in degrees) for extensive paths (iff ILODEF = 2)
AN Van Eekelen exponent (default value=-0.229)
Line 4 (4G10.0)
COH0 Initial value of cohesion
COHF Final value of cohesion
BCOH Only if there is hardening/softening
TRACTION Limit of the traction stress (only if ITRACT$\neq$0)
Line 5 (4G10.0)
POROS Initial soil porosity ($n_0$)
RHO Specific mass
DIV Parameter for the computation of NINTV in the law (for NINTV = 0 only)
BIOPT Bifurcation computation parameter
Line 6 (7G10.0)
ALPHA2 Volumetric thermal expansion coefficient of the solid
ALPHA0 Shape parameter for LY curve (ILY=0 : formulation ENPC, for ACMEG-T see below)
BETA0 Hardening parameter for TY curve (1/Pa)
TC Critical temperature (TY curve) (°K)
T0 Initial temperature (TY curve) (°K) \[TY \equiv T_{cT} - \left[(T_c-T_0)\exp(-\beta p')+T_0\right] = 0\]
Line 7 (4G10.0)
C1 Parameter for HC curve
C2 Parameter for HC curve
A parameter Parameter for the definition of the thermal volumetric plastic strain
GAMA Shape parameter for LY curve according ACMEG-T (ILY = 1) \[HC\equiv p'-c_1 p'_{c0}\exp(c_2\Delta T) = 0\]

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

36 for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
24 in all the other cases

List of state variables

Q(1) = 1 in plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) Actualised specific mass
Q(3) = 0 if the current state is elastic
= 1 if the current state is elasto-plastic (Friction mechanism)
= 2 if the current state is elasto-plastic (Pore collapse mechanism)
= 3 if the current state is elasto-plastic (Traction mechanism)
= 4 if the current state is elasto-plastic (Friction + pore mechanisms)
= 5 if the current state is elasto-plastic (Friction + traction mechanisms)
Q(4) Plastic work per unit volume ($W^p$)
Q(5) Actualised value of porosity
Q(6) Equivalent strain n°1 : $\varepsilon_{eq1}=\int \Delta\dot{\varepsilon}_{eq}\;\Delta t$
Q(7) Updated value of pre-consolidation pressure $p_0$
Q(8) Equivalent strain indicator n°1 (Villote n°1) : $\alpha_1 = \dfrac{\Delta\dot{\varepsilon}_{eq}\;\Delta t}{\varepsilon_{eq1}}$
Q(9) X deformation
Q(10) Y deformation
Q(11) Z deformation
Q(12) XY deformation
Q(13) Volumetric strain
Q(14) Deviatoric strain
Q(15) Actualised value of cohesion
Q(16) Actualised value of frictional angle in compression path ($\phi_C$)
Q(17) Actualised value of frictional angle in extension path ($\phi_E$)
Q(18) Apex criterion
Q(19) Actualised value of BETA
Q(20) Actualised value of ALPHAP
Q(21) Actualised value of temperature
Q(22) ITESTALPHA : Variable for the calculation of ALPHAP
Q(23) Actualised value of the pre-consolidation pressure as a function of the temperature (Pa)
Q(24) Number of sub-intervals used for the integration
Q(25) KSUMMITER
Q(26) K (Pa)
Q(27) G (Pa)
Q(28)$\rightarrow$Q(39) Reserved for bifurcation

Elastic forms

IELA = 0 : Linear elasticity

E_PAR1 E: Young's Elastic modulus
E_PAR2 ANU: Poisson's ratio
E_PAR3 Not used
E_PAR4 Not used
HARD ECRO: Hardening parameter

IELA = 1 : Non-linear elasticity

E_PAR1 KAPPA: Elastic slope in oedometer path
E_PAR2 ANU: Poisson's ratio
E_PAR3 Not used
E_PAR4 Not used
HARD LAMBDA: Plastic slope in oedometer path

\[ECRO = \frac{1+e_0}{\lambda-\kappa}\]

IELA = 2 : Non-linear elasticity

E_PAR1 KAPPA: Elastic slope in oedometer path
E_PAR2 G0: Shear modulus
E_PAR3 Not used
E_PAR4 Not used
HARD LAMBDA: Plastic slope in oedometer path

\[ECRO = \frac{1+e_0}{\lambda-\kappa}\]

IELA = 3 : Non-linear elasticity

E_PAR1 KAPPA: Elastic slope in oedometer path
E_PAR2 K0: Minimum value of the bulk modulus
E_PAR3 G0: Shear modulus
E_PAR4 ALPHA2
HARD LAMBDA: Plastic slope in oedometer path

\[ECRO = \frac{1+e_0}{\lambda-\kappa}\]

IELA = 4 : Non-linear elasticity

E_PAR1 K0: Minimum value of the bulk modulus
E_PAR2 n: n parameter
E_PAR3 G0: Shear modulus
E_PAR4 Patm: Atmospheric pressure
HARD

ECRO = HARD

IELA = 5 : Non-linear elasticity

E_PAR1 $\nu$ : Poisson’s ratio
E_PAR2 n: n parameter
E_PAR3 G0: Shear modulus
E_PAR4 Patm: Atmospheric pressure
HARD

ECRO = HARD

IPCONS parameter

IPCONS = 0 : $p_0$ = PCONS0
IPCONS = 1 : $p_0$ = $\sigma_v$ . OCR
IPCONS = 2 : $p_0$ = $p_0$($\sigma$, cohesion, $\phi$) . OCR

Where : $p_0$($\sigma$, cohesion, $\phi$) = $\left[\dfrac{-II_{\hat{\sigma}}^2}{m^2\left(I_{\sigma}-\frac{3c}{\tan\phi}\right)}-I_{\sigma}\right]/3$

laws/eptsoil.txt · Last modified: 2020/08/25 15:46 (external edit)