User Tools

Site Tools


laws:ecous

ECOU-S

Description

Constitutive law of flow in porous media for solid elements.

The model

This law is used for non linear analysis of seepage in porous media. The case of free surface seepage is also treated. This law is used in two or three dimensional flow.

The mathematical model is:

  1. Conservation of the mass of the fluid: \[\frac{\partial}{\partial t}(\rho_f.\theta)+div(\rho_f.\underline{q})=0\]
  2. Motion of the fluid: \[\underline{q} = \frac{-k}{\mu}\left(\underline{grad}(p)+\rho_f.g.\underline{grad}(z)\right)\]

Files

Prepro: LECOUS.F
Lagamine: ECOU2.F, ECOU22.F, ECOU3.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 125
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (6I5)
ISEMI = 0 → flow analysis
= 1 → if semi-coupled mechanical-flow analysis
= 2 → if full coupled mechanical-flow analysis 
IANI = 0 → isotropic case
≠ 0 → anisotropic case
IKRN = 0
= 1 → Kozeny Karman relation $K=f(n)$
= 2 → GDR Momas relation $K=f(n)$
ISRW Formulation index for $S_w$ (see Appendix 8)
≠ 0 → in case of seepage with free surface
= 0 → in absence of free surface
IKW Formulation index for $k_w$ (see Appendix 8)
ISTRUCT Formulation index for istruct 

Real parameters: permeability definition

The permeability $k$ is an intrinsic permeability ([$L^2$]) and $K$ is the permeability coefficient ([$LT^{-1}$]) : \[k_{intrinsic} = K\frac{\mu_f}{\rho_f g}\]\[[L^2]=[LT^{-1}]\frac{[ML^{-1}T^{-1}]}{[ML^{-3}][LT^{-2}]}\]

If IANI ≠ 0

Line 1 (4G10.0) - Repeat IANI times (I=1,IANI)
PERMEA(I) Soil anisotropic intrinsic permeability (k) in the direction I
COSX(I) Director cosinus of the direction I
COSY(I) Director cosinus of the direction I
COSZ(I) Director cosinus of the direction I

Else, if IANI = 0

Line 1 (1G10.0)
PERME Soil isotropic intrinsic permeability (k)

Real parameters

Line 1 (7G10.0)
RHO Specific mass of the fluid $\rho_f$ [kg.m$^{-3}$]
POROS Soil porosity $n_0$
EMMAG Storage coefficient $C_p$ [Pa$^{-1}$]
UXHIW Fluid compressibility coefficient $1/\chi_w$ [Pa$^{-1}$]
POROP Soil porosity for pollution analysis (code “TRANSPOL”)
VISCO Fluid dynamic viscosity $\mu_f=10^{-3}$ (default value for water at 20°C) [Pa.s]
PAIR Air pressure (to define the suction for ISRW$\neq$ 0 
Line 2 (7G10.0)
CSR1 1st coefficient of the function $S_w$
CSR2 2nd coefficient of the function $S_w$
CSR3 3rd coefficient of the function $S_w$
CSR4 4th coefficient of the function $S_w$
SRES Residual saturation degree ($S_{res}$) 
SRFIELD Field saturation degree ($S_{rfield}$)
AIREV Air entry value [Pa]
Line 3 (5G10.0)
CKW1 1st coefficient of the function $k_{rw}$
CKW2 2nd coefficient of the function $k_{rw}$
KRMIN Minimum value of kr
CKW3 3rd coefficient of the function $k_{rw}$
CSR5 5th coefficient of the function $S_w$ (if ISRW=26)
Line 4 (3G10.0)
EXPM km exponent for the Kozeny Karman formulation
EXPN kn exponent for the Kozeny Karman formulation
HENRY Henry's coefficient : solubility coefficient of air into water
Line 5 (3G10.0)
SOIL MICROPOROSITY Microstructural void ratio for dry material (if ISTRUCT$\neq$0)
COEF.BETA0 For microporosity evolution (if ISTRUCT$\neq$0)
COEF.BETA1 For microporosity evolution (if ISTRUCT$\neq$0)

Following empirical formulations for describing the evolution of the relative permeability, and saturation with the suction are possible : see Appendix 8.

The storage coefficient $C_p$ allows to take into account the variation of the water stored in the pore due to soil deformations in a hydraulical analysis. The volume of water stored is given by the following relation : \[\theta=n.S_r\]

In order to take soil deformations into account, the volume of water stored is given by :

$\theta = n.S_r+C_p(p-CSR2)$ if ISRW=8 and p > CSR2
$\theta=n.S_r+C_p.p$ if ISRW$\neq 8$ and p > 0

The Kozeny Karman formulation is : \[K=C_0\frac{n^{EXPN}}{(1-n)^{EXPM}}\] where $C_0$ is computed automatically from $C_0=K_0\dfrac{(1-n_0)^{EXPM}}{n_0^{EXPN}}$.

The GDR Momas formulation is : \[\frac{k}{k_0} = 1 + EXPM[\phi-\phi_0]^{EXPN}\] where $EXPM=2.10^{12}$ and $EXPN=3$.

Stresses

Number of stresses

5 for 3D state
4 for the other cases

Meaning

For the 3-D state:

SIG(1) fluid mass flow in the X direction ($f_x=\rho_fq_x$)
SIG(2) fluid mass flow in the Y direction ($f_y=\rho_fq_y$)
SIG(3) fluid mass flow in the Z direction ($f_z=\rho_fq_z$)
SIG(4) fluid mass stored as a consequence of the evolution of soil porosity ($=\rho_e=\frac{\partial}{\partial t}(\rho_f\theta)$)
SIG(5) none 

For the other cases:

SIG(1) fluid mass flow in the X direction ($f_x=\rho_fq_x$)
SIG(2) fluid mass flow in the Y direction ($f_y=\rho_fq_y$)
SIG(3) fluid mass stored as a consequence of the evolution of soil porosity ($=\rho_e=\frac{\partial}{\partial t}(\rho_f\theta)$)
SIG(4) none 

State variables

Number of state variables

5

List of state variables

Q(1) 0 (meaningless)
Q(2) Soil isotropic permeability ($=k$)
Q(3) Soil porosity ($=n_0$)
Q(4) Saturation (only with free surface)
$S_r=1$ if $p\geq 0$
$S_r=\frac{\theta}{n_0}$ if $p<0$
Q(5) Actualised fluid specific mass
laws/ecous.txt · Last modified: 2020/08/25 15:46 (external edit)