User Tools

Site Tools


elements:sgrc2

SGRC2

Plane or axisymmetric state

Description

Mechanical-flow analysis, Grenoble 2nd gradient method, in large deformations.

The element is defined by 9 nodes specified in NODES in the order indicated in the figure.

Nodes 1, 3, 5, and 7 have 6 DoF ($u_1$, $u_2$, $v_{11}$, $v_{12}$, $v_{21}$, $v_{22}$), whereas nodes 2, 4, 6, and 8 only have 2 DoF ($u_1$, $u_2$). The central node 9 has 4 DoF ($\lambda_{11}$, $\lambda_{12}$, $\lambda_{21}$, $\lambda_{22}$), that have a different signification from ($v_{11}$, $v_{12}$, $v_{21}$, $v_{22}$) but occupy the same position.

The flow description can be completely different from the mechanical description: the pressure can be interpolated linearly in a 4 node configuration, while the mechanical degrees of freedom are interpolated parabolically in an 8-node configuration. In that case, the flow DoF must be fixed for the nodes that are not used (2, 4, 6, and 8).

Type: 218

Implemented by: J-P. Radu, F. Collin (2003)

The framework definition of this element can be found in Pardoen (2015)1).

Files

Prepro: SGRC2A.F
Lagamine: SGRC2B.F

Input file

Title (A5)
TITLE“SGRC2” in the first 5 columns
Control data (4I5)
NELEMNumber of elements
ISPSMAS0
INSIG= 0 → No initial stress
= 1 or 2 → Initial stresses
INBIO= 0 → No Biot coefficient
= 1 → Isotropic Biot coefficient
= 2 → Anisotropic Biot coefficient
Only for orthotropic mechanical law ORTHOPLA
Initial stresses - Only if INSIG > 0 (4G10.0)
If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$
If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,0)$
SIGY0 $\sigma_{y0}$ effective stress $\sigma_y$ at the axes origin
DSIGYEffective stress gradient along Y axis
AK0X$k_0$ ratio $\sigma_x/\sigma_y$
AK0Z$k_0$ ratio $\sigma_z/\sigma_y$ (if AK0Z=0, AK0Z=AK0X)
Biot coefficient - Only if INBIO > 0 (3G10.0)
See CSOL2 for more details
If INBIO = 1
CBIOTBiot coefficient
If INBIO = 2
CBIOT1Biot coefficient $b_{11}$
CBIOT2Biot coefficient $b_{22}$
CBIOT3Biot coefficient $b_{33}$
Definition of the elements (5I5/9I5)
NINTENumber of integration points (1, 4, or 9)
LMATM“Classic” mechanical law
LMATSG“Second gradient” material law
LMATFFluid law
NNODFNumber of fluid nodes (4 or 8 - Default value = 8)
NODES(9)List of nodes

Results

Stresses (in global axes):
4 “classic” mechanical stresses: $\sigma_x$, $\sigma_y$, $\sigma_{xy}$, $\sigma_z$
8 “second gradient” mechanical stresses: $\Sigma_{111}$, $\Sigma_{112}$, $\Sigma_{121}$, $\Sigma_{122}$, $\Sigma_{211}$, $\Sigma_{212}$, $\Sigma_{221}$, $\Sigma_{222}$
4 flow stresses: $f_x$, $f_y$, $f_{emmagasiné}$, $0$

Internal variables:
Internal variables of the “classic” mechanical law
Internal variables of the “second gradient” mechanical law
Internal variables of the fluid law

1)
Pardoen, B. (2015). Hydro-mechanical analysis of the fracturing induced by the excavation of nuclear waste repository galleries using shear banding. PhD thesis, University of Liège. https://orbi.uliege.be/handle/2268/188222
elements/sgrc2.txt · Last modified: 2023/12/12 15:59 by gilles