User Tools

Site Tools


laws:eplev

EP-LEV

Description

An elasto-viscoplastic simplified law

The model

Mechanical analysis of visco-plastic isotropic solids undergoing large strains.
Isotropic hardening is assumed.

Files

Prepro: LLEV.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 65
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

For IANA = 1 (plane stress state)

MLAWthe method used to calculate the increments of stress
= 0 $\rightarrow$ Backword Euler method
= 1 $\rightarrow$ Radial Return method
= 2 $\rightarrow$ Decomposed mode method
MANA= 0 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda} = 0$
= 1 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{eq}$ $\Rightarrow$ $\dot{\sigma}_{eq}$
= 2 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{eq}$ $\Rightarrow$ $\dot{\varepsilon}_{eq}$
= 3 The tangent matrix obtained by the consistent condition

Else (plane strain and axisymmetric state)

MLAW the method used to calculate the increments of stress
0 $\rightarrow$ Radial Return method
1 $ \rightarrow$ Implicit integration method
2 $\rightarrow$ Modified implicit integration method

If MLAW = 0 (Radial return method)

MANA= 0 $\rightarrow$ The tangent matrix obtained by setting $\dot{\omega} = 0$
= 1 $\rightarrow$ The tangent matrix obtained by setting $\dot{\sigma}_{eq}$ = $\dot{\sigma}_{eq}^{trial}$
= 2 $\rightarrow$ The tangent matrix obtained by setting $\dot{\sigma}_{eq}$ $\Rightarrow$ $\dot{\varepsilon}_{eq}$

Else (other methods)

MANA= 0 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{vp} = 0$
= 1 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{vp}$ $\Rightarrow$ $\dot{\sigma}_{eq}$
= 2 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{eq}$ $\Rightarrow$ $\dot{\varepsilon}_{eq}$

Real parameters

Line 1 (4G10.0)
E YOUNG's elastic modulus
$\nu$ POISSON's ratio.
ACparameter for $\sigma - \varepsilon$ relation
AMparameter for $\sigma - \varepsilon$ relation

Where: \[\hat{\sigma}_{eq}=AC*\hat{D}_{eq}^{AM}\]

$\hat{\sigma}_{eq}$ the equivalent deviatoric stress
$\hat{D}_{eq}$ the equivalent deviatoric velocity of deformation

Stresses

Number of stresses

4

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

SIG(1)$\sigma_{XX}$
SIG(2)$\sigma_{YY}$
SIG(3)$\sigma_{XY}$
SIG(4)$\sigma_{ZZ}$

State variables

Number of state variables

4

List of state variables

Q(1) element thickness (t) in plane stress state and generalized plane state
1 in plane strain state
circumferential strain rate ($\dot{varepsilon}_{\theta}$) in axisymmetric state
Q(2) current yield limit in tension, its initial value is $R_{eo}$
Q(3) equivalent deviatoric strain $\hat{\varepsilon}_{eq}$
Q(4) equivalent deviatoric stress $\sigma_{eq}$
Q(5)critères de fractures
Q(10)
laws/eplev.txt · Last modified: 2020/08/25 15:46 (external edit)