User Tools

Site Tools


laws:persol

PERSOL

Description

Non-associated PERZYNA type visco-plastic constitutive law with non-linear elasticity. Isotropic hardening/softening for friction angle, cohesion and pre-consolidation pressure. For solid elements at constant temperature.

The model

This law is used for mechanical analysis of visco-plastic isotropic porous media undergoing large strains.

Files

Prepro: LPERSOL.F
Lagamine: PERZINT.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES (no bifurcation analysis)
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 69
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

LPARAM(5) to LPARAM(14) :

Line 1 (11I5)
NINTV Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV
ISOL = 0 : Use of total stresses in the constitutive law
= 1 : Use of effective stresses in the constitutive law (See appendix 8)
IELA = 0 : Linear elasticity
> 1 : Non-linear elasticity for the moment MAX=4
ILODEF Deviatoric section shape of the loading surface in {$\sigma_1 ; \sigma_2 ; \sigma_3$}
= 1 : Circle in the deviatoric plane
= 2 : Smoothed irregular hexagon in the deviatoric plane
ILODEG Deviatoric section shape of the potential surface in {$\sigma_1 ; \sigma_2 ; \sigma_3$}
= 1 : Circle in the deviatoric plane
= 2 : Smoothed irregular hexagon in the deviatoric plane
IECPS = 0 : $\Psi$ is defined with PSIC and PSIE
= 1 : $\Psi$ is defined by the Taylor rule : PHMPS=$\phi_C-\Psi_C=\phi_E-\Psi_E$
IECROUC = 1 : no hardening in cap
= 2 : Hardening in cap
IECROUD = 1 : No hardening in failure
= 2 : Hardening in failure
KMETH = 3 : Mean vgrad method
= 2 : Actualised vgrad method (=KJaum ?)
ICBIF = 0 : Nothing
= 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis)
IUNDIM ???

Real parameters

Line 1 (6G10.0)
E_PAR1 First elastic parameter
E_PAR2 Second elastic parameter
E_PAR3 Third elastic parameter
E_PAR4 Fourth elastic parameter
ECROHardening parameter - TO BE CHECKED
H1
Line 2 (6G10.0)
PCONS0Pre-consolidation pressure
If PCONSO0=0, OCR is used
OCROver Consolidation Ratio
AI1MIN Minimum value of $I_{\sigma}$ for non-linear elasticity
PSIC $\psi_C$
IECPS = 1 : not used
IECPS = 0 : PSIC = const = PARAM(32)
PSIE $\psi_E$
IECPS = 1 : not used
IECPS = 0 : PSIE = const = PARAM(33)
PHMPS TAYLOR constant, used if IECPS=1
then PSIC = PHIC-PHMPS
PSIE = PHIE - PHMPS
Line 3 (6G10.0)
PHIC0 $\phi_{C0}$ ($\phi_{C}$ is the Coulomb angle in degrees for compression)
PHICF $\phi_{Cf}$ ($\phi_{C}$ is the Coulomb angle in degrees for compression)
BPHI $B_p$
PHIE0 $\phi_{E0}$ ($\phi_{E}$ is the Coulomb angle in degrees for extension)
PHIEF $\phi_{Ef}$ ($\phi_{E}$ is the Coulomb angle in degrees for extension)
AN Van Eekelen exponent (default value=-0.229)
Line 4 (5G10.0)
COH0 $c_0$ (COH is the cohesion value)
COHF $c_f$
BCOH $B_c$
POROS0 Initial soil porosity ($n_o$)
RHO Specific mass
Line 5 (4G10.0)
ALPHAC Visco-plastic parameter for $\Phi_c=\left(\frac{f_c}{p_0}\right).\alpha_c$
OMEGA Viscosity parameter for $\gamma_c$
AIOT Viscosity parameter for $\gamma_c$
PATM Atmospheric pressure, defined two times for IELA=4
Line 6 (4G10.0)
A2D in degree ($\phi$) Parameter $a_2$ for $\gamma_d=a_2\gamma_c$
ALPHAD Parameter $\alpha_d$ for $\Phi_d=\left(\frac{f_d}{p_0}\right)^{\alpha_d}$
DIV Parameter for the computation of NINTV (if NINTV=0)
BIOPT
IELA = 0 IELA = 1 IELA = 2 IELA = 3 IELA = 4
E_PAR1 $\kappa$ $\kappa$ $\kappa$ $\kappa$
E_PAR2 $\nu$ $\nu$ $G_0$ $G_0$ $G_0$
E_PAR3 $K_0$ Exp_N
E_PAR4 ALPHA_2 PATM
ECRO ECRO $\lambda$ \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] $\lambda$ \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] $\lambda$ \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] $\lambda$ \[ECRO=\frac{1+e_0}{\lambda-\kappa}\]

Where :

$K_0$ Minimum value of the bulk modulus
Exp_N $n$ parameter
$G_0$ Shear modulus
PATM Atmospheric pressure
$\lambda$ Plastic slope in oedometer path
$\kappa$ Elastic slope in oedometer path
ECRO Hardening parameter (TO BE CHECKED)

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$

State variables

Number of state variables

= 32 for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
= 20 in all the other cases

List of state variables

Q(1) = 1 : Plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) Specific mass $\rho$ actualised in the element routine
Q(3) = 0 : Current state is elastic
= 1,2 : Current state is inelastic CAP or D
Q(4) Plastic work per unit volume ($W^p$)
Q(5) Porosity : $n=\frac{e}{1-e}=\frac{\Omega_{voids}}{\Omega_{total}}$
Q(6) = $\sin(3\beta)$ where $-\frac{\pi}{6}\leq\beta\leq\frac{\pi}{6}$ is a Lode's angle
Q(7) Pre-consolidation pressure $p_0$
Q(8) First stress invariant $I_{\sigma}$
Q(9) Stress deviator second invariant $II_s$
Q(10)
Q(11)
Q(12)
Q(13) Actualised value of inelastic volume strain in CAP : $\varepsilon_v^c$
Q(14) Actualised value of equivalent plastic strain in DEV. : $\bar{e}_d$
Q(15) Actualised value of cohesion $c$
Q(16) Actualised value of Coulomb’s friction angle for compressive paths $\phi_C$
Q(17) Actualised value of Coulomb’s friction angle for extensive paths $\phi_E$
Q(18) Not used
Q(19) Number of sub-intervals used for the integration NINTV
Q(20) Memory of localisation calculated during the re-meshing
Q(21)$\rightarrow$Q(32) Reserved for bifurcation

Formulation

Loading and potential surfaces

The stresses and stress invariants are : \[I_{\sigma} = \sigma_{ij}\quad ; \quad \hat{\sigma}_{ij}=\sigma_{ij}-\frac{I_{\sigma}}{3}\delta_{ij} \] \[II_{\hat{\sigma}}=\sqrt{\frac{1}{2}\hat{\sigma}_{ij}\hat{\sigma}_{ij}}\quad ;\quad III_{\hat{\sigma}} = \frac{1}{3}\hat{\sigma}_{ij}\hat{\sigma}_{jk}\hat{\sigma}_{ki}\] \[\beta =-\frac{1}{3}\sin^{-1}\left(\frac{3\sqrt{3}}{2}\frac{III_{\hat{\sigma}}}{II^3_{\hat{\sigma}}}\right)\]

Criterion with friction angle different from 0 (Drücker Prager or Van Eekelen)

The regular criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}<\frac{3c}{\tan\phi_c}$ : \[f=II_{\hat{\sigma}}+m\left(I_{\sigma}-\frac{3c}{\tan\phi_c}\right)=0\] with:

  • Drücker Prager : $m = \frac{2\sin\phi_c}{\sqrt{3}(3-\sin\phi_c)}$
  • Van Eekelen : $m=a(1+b\sin 3\beta)^n$ where $a$ and $b$ are functions of $\phi_C$, $\phi_E$ and $n$.

The apex criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}\geq\frac{3c}{\tan\phi_C}$ : \[f=I_{\sigma}-\frac{3c}{\tan\phi_c}=0\] where $m'$ is the equivalent of $m$ but for the flow surface (i.e. $\phi$ is replaced by $\psi$ )

Criterion with friction angle equal to 0 (Von Mises criterion)

\[f=II_{\hat{\sigma}}-\frac{2c}{\sqrt{3}} = 0\]

Hardening/softening

Hardening/softening is assumed to be represented by the evolution of friction angles and/or cohesion as a function of the Von Mises equivalent plastic strain : \[\varepsilon_{eq}^p=\sqrt{\frac{2}{3}\hat{\varepsilon}_{ij}^p\hat{\varepsilon}_{ij}^p}\]

Hyperbolic functions are used :

  1. If ILODE = 1 or 2 : \[\phi_C=\phi_{C0}+\frac{(\phi_{Cf}-\phi_{C0})\varepsilon_{eq}^p}{B_p+\varepsilon_{eq}^p}\]\[c=c_0+\frac{(c_f-c_0)\varepsilon_{eq}^p}{B_c+\varepsilon_{eq}^p}\]
  2. Only if ILODE = 2 : \[\phi_E=\phi_{E0}+\frac{(\phi_{Ef}-\phi_{E0})\varepsilon_{eq}^p}{B_p+\varepsilon_{eq}^p}\] where coefficients $B_p$ and $B_c$ are respectively the values of equivalent plastic strain for which half of the hardening/softening on friction angles and cohesion is achieved (see figure below).

Structure of PARAM

PARAM(1,ILAW) ZERO
PARAM(2,ILAW) E_PAR1 First elastic parameter
PARAM(3,ILAW) E_PAR2 Second elastic parameter
PARAM(4,ILAW) E_PAR3 Third elastic parameter
PARAM(5,ILAW) E_PAR4 Fourth elastic parameter
PARAM(6,ILAW) COH Cohesion value
PARAM(7,ILAW) PCONS0 Pre-consolidation pressure
If PCONSO0=0, OCR is used)
PARAM(8,ILAW) AI1MIN Minimum value of $I_{\sigma}$ for non-linear elasticity
PARAM(9,ILAW) PHIC Coulomb's angle (in degrees) for compression
PARAM(10,ILAW) PHIE Coulomb's angle (in degrees) for extension
PARAM(11,ILAW) AN Van Eekelen exponent (default value=-0.229)
PARAM(12,ILAW) POROS0 Initial soil porosity ($n_o$)
PARAM(13,ILAW) ECRO
PARAM(14,ILAW) DIV Parameter for the computation of NINTV (if NINTV=0)
PARAM(15,ILAW) RHO Specific mass
PARAM(16,ILAW) BIOPT ???
PARAM(17,ILAW) OCR
Visco-parameters for CAP case -“c”
PARAM(18,ILAW) ALPHAC Visco-plastic parameter for $\alpha_c=\left(\frac{f_c}{p_0}\right).\alpha_c$
PARAM(19,ILAW) OMEGA Viscosity parameter for $\gamma_c$
PARAM(20,ILAW) AIOT Viscosity parameter for $\gamma_c$
PARAM(21,ILAW) PATM Atmospheric pressure, defined two times for IELA=4
Visco-parameters for DEVIATORIC case -“d”
PARAM(22,ILAW) A2D in degree ($\phi$) Parameter $a_2$ for $\gamma_d=a_2\gamma_c$
PARAM(23,ILAW) ALPHAD Parameter $\alpha_d$ for $\Phi_d=\left(\frac{f_d}{p_0}\right)^{\alpha_d}$
Parameters for failure hardening laws
PARAM(24,ILAW) PHIC0 $\phi_{C0}$
PARAM(25,ILAW) PHICF $\phi_{Cf}$
PARAM(26,ILAW) BPHI $B_p$
PARAM(27,ILAW) PHIE0 $\phi_{E0}$
PARAM(28,ILAW) PHIEF $\phi_{Ef}$
PARAM(29,ILAW) COH0 $c_0$
PARAM(30,ILAW) COHF $c_f$
PARAM(31,ILAW) BCOH $B_c$
PARAM(32,ILAW) PSIC $\psi_C$
IECPS = 1 : not used
IECPS = 0 : PSIC = const=PARAM(32)
PARAM(33,ILAW) PSIE $\psi_E$
IECPS = 1 : not used
IECPS = 0 : PSIE = const=PARAM(33)
PARAM(34,ILAW) PHMPS TAYLOR constant, used if IECPS=1
then PSIC = PHIC-PHMPS
PSIE = PHIE - PHMPS
laws/persol.txt · Last modified: 2020/08/25 15:46 (external edit)