User Tools

Site Tools


laws:fmivp

FMIVP

Description

Constitutive law for mixed limit condition for element FMIVP (seepage and evaporation)

The model

This law is only used for non linear analysis of solids. This constitutive law allows to impose a mixed limit condition on a boundary, with a classical penalty method, combining with an evaporation boundary condition.

Files

Prepro: LFMIVP.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 198
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
IDDLDDL number (3 = water, 4 = air, 5 = temperature, in 2D case)
DDL number (4 = water, 5 = air, 6 = temperature, in 3D case)
ISRWFormulation index for retention curve $S_{rw}$

Real parameters

Line 1 (5G10.0)
COEFKK penalty coefficient
ALPHAMass transfer coefficient $\left[m/s\right]$
PG0Definition gas pression $\left[Pa\right]$
T0Definition temperature pression $\left[ K\right]$
LLatent heat of the liquid $\left[ J/kg\right]$
BETAConvective heat transfer coefficient
Line 2 (6G10.0)
CSR11st coefficient of the function $S_{rw}$
CSR22nd coefficient of the function $S_{rw}$
CSR33rd coefficient of the function $S_{rw}$
CSR44th coefficient of the function $S_{rw}$
SRESresidual saturation degree ( = $S_{res}$)
SRFIELDfield saturation degree ( = $S_{r,field}$)
AIREVair entry value $\left[Pa\right]$

Stresses

Number of stresses

3

Meaning

SIG(1)water output or input flow at the boundary
SIG(2)gas output or input flow at the boundary
SIG(3)temperature output or input flow at the boundary

State variables

Number of state variables

5

List of state variables

Q(1) = 0
Q(2)porous surface relative humidity
Q(3)drying air relative humidity
Q(4)total water flow
Q(5)evaporation flow

The total water flow boundary condition is expressed as the sum of the seepage flow and vapour exchange flow \[ \vec{q} = \vec{S} + \vec{E} \] A ramp function gives the expression of the seepage liquid flow $\vec{S}$ : \[ \left\{ \begin{array}{l} \vec{S} = K_{pen} . (p_w^f - p_{atm})^2\ \text{if}\ p_w^f \geq p_w^{cav}\ \text{and}\ p_w^f \geq p_{atm}\\ \vec{S} = 0 \ \text{if}\ p_w^f < p_w^{cav}\ \text{or}\ p_w^f < p_{atm} \end{array} \right. \] With $p_w^f$ the pore water pressure in the rock mass formation, $p_w^{cav}$ the water pressure corresponding to the relative humidity in the cavity (using Eq. 10), $p_{atm}$ the atmospheric pressure and $k_{pen}$ a seepage transfer coefficient.

The evaporation exchange is expressed as the difference of vapour density between the tunnel atmosphere and rock mass: \[ \vec{E} = \alpha_0 S_{r,w}^f (\rho_v^f - \rho_v^{cav}) \] With $\rho_v^f$ and $\rho_v^{cav}$ vapour density respectively in the formation and in the cavity and $\alpha$ a vapour mass transfer coefficient (that depends on the degree of saturation $S_{r,w}^f$).

De la même manière, on exprime que l’évaporation en surface dépend des conditions thermiques. Le flux de chaleur $\vec{t}$ de la frontière vers l’extérieur est exprimé par : \[ \vec{t} = L \vec{q} - \beta \left( T_{air} - T_{roche}^\Gamma \right) \] Avec $T_{air}$ et $T_{roche}^\Gamma$ la température respectivement de l’air ambiant et en paroi d’échantillon, $\beta$ un coefficient de transfert de chaleur et $L$ la chaleur latente de vaporisation (= 2500 kJ/kg). Le premier terme correspond à l’énergie consommée pour la vaporisation de l’eau en paroi, tandis que le second terme correspond au flux de chaleur convectif entre l’atmosphère et le milieu poreux.

laws/fmivp.txt · Last modified: 2020/08/25 15:46 (external edit)