User Tools

Site Tools


laws:hypofe2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hypofe2 [2023/11/24 11:12]
arthur [Files]
laws:hypofe2 [2023/11/29 13:51] (current)
arthur [The model]
Line 30: Line 30:
  
 The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model: The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model:
-\[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\]  +\[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 ​\left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\]  
-\[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]+\[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 ​\left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]
  
 The hysteresis is then defined by: The hysteresis is then defined by:
Line 154: Line 154:
 |SIG(9)|Homogenised mean flow of the pollutant along $y$ $(=(f_{py,​a}+f_{py,​b})/​2)$| |SIG(9)|Homogenised mean flow of the pollutant along $y$ $(=(f_{py,​a}+f_{py,​b})/​2)$|
 |SIG(10)|Homogenised pollutant flow stored (takes advection into account) $(=f_{pe})$| |SIG(10)|Homogenised pollutant flow stored (takes advection into account) $(=f_{pe})$|
-|SIG(11)|Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,​b})| +|SIG(11)|Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,​b})$
-|SIG(12)|Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,​b})|+|SIG(12)|Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,​b})$|
 |SIG(13)|Homogenised gas flow along $x$ $(=f_{gx})$| |SIG(13)|Homogenised gas flow along $x$ $(=f_{gx})$|
 |SIG(14)|Homogenised gas flow along $y$ $(=f_{gy})$| |SIG(14)|Homogenised gas flow along $y$ $(=f_{gy})$|
laws/hypofe2.1700820757.txt.gz · Last modified: 2023/11/24 11:12 by arthur