Elasto isotrop-plastic anisotropic constitutive law for solid elements at constant temperature for element jet.
Mechanical analysis of elasto isotropic-plastic anisotropic element undergone large deformation. Isotropic hardening is assumed.
Prepro: LJTHIL.F
Lagamine: JT2HIL.F, JT3HIL.F
Plane stress state | NO |
Plane strain state | YES |
Axisymmetric state | YES |
3D state | YES |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 63 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (2I5) | |
---|---|
NINTV | number of sub-steps used to integrate numerically the constitutive equation in a time step -1 calcul automatique du NINTV |
NPOINT | number of points to define the hardening law |
Line 1 (2G10.0) | |
---|---|
E | Young modulus |
ANU | Poisson ratio |
Line 1 (2G10.0) | |
---|---|
SY11 | $\sigma_{11}^{y}$ |
ET11 | $E_{11}^{t}$ |
Line 2 (2G10.0) | |
SY22 | $\sigma_{22}^{y}$ |
ET22 | $E_{22}^{t}$ |
Line 3 (2G10.0) | |
SY33 | $\sigma_{33}^{y}$ |
ET33 | $E_{33}^{t}$ |
Line 4 (2G10.0) | |
SY12 | $\sigma_{12}^{y}$ |
ET12 | $E_{12}^{t}$ |
For 3D analysis:
Line 5 (2G10.0) | |
---|---|
SY13 | $\sigma_{13}^{y}$ |
ET13 | $E_{13}^{t}$ |
Line 6 (2G10.0) | |
SY23 | $\sigma_{23}^{y}$ |
ET23 | $E_{23}^{t}$ |
It needs at least 3 cards for this law (I7, NPOINT = 2)
Line 1 (7G10.0) | |
---|---|
SY11 | $\sigma_{xx}^{y}$ |
SY22 | $\sigma_{yy}^{y}$ |
SY33 | $\sigma_{zz}^{y}$ |
SY12 | $\sigma_{xy}^{y}$ |
SY13 | $\sigma_{xz}^{y}$ |
SY23 | $\sigma_{zy}^{y}$ |
Line 2 (2G10.0) - Repeated NPOINT times | |
EPS(I) | (equivalent $\sigma - \epsilon$ relation) |
SIG(I) |
With NPOINT > 0, the shape of the yield locus is constant ; only its size evolves. The normality rule is not completely fulfilled with this option. It is indeed defined as :
$\dot{\lambda}\frac{\partial f}{\partial \underline{\sigma}} = \underline{\dot{\varepsilon}^{p}} $ = $ \begin{pmatrix} \dot{\varepsilon_{11}^{p} }\\ \dot{\varepsilon_{22}^{p} }\\ \dot{\varepsilon_{33}^{p} }\\ \dot{\gamma_{12}^{p} } \\ \dot{\gamma_{13}^{p} } \\ \dot{\gamma_{23}^{p} }\end{pmatrix}$ instead of $ \begin{pmatrix} \dot{\varepsilon_{11}^{p} }\\ \dot{\varepsilon_{22}^{p} }\\ \dot{\varepsilon_{33}^{p} }\\ \dot{\varepsilon_{12}^{p} } \\ \dot{\varepsilon_{13}^{p} } \\ \dot{\varepsilon_{23}^{p} }\end{pmatrix}$
4 for 2D analysis
6 for 3D analysis
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 2D analysis
SIG(1) | $\sigma_{XX}$ |
SIG(2) | $\sigma_{YY}$ |
SIG(3) | $\sigma_{ZZ}$ |
SIG(4) | $\sigma_{XY}$ |
For 3D analysis:
SIG(1) | $\sigma_{XX}$ |
SIG(2) | $\sigma_{YY}$ |
SIG(3) | $\sigma_{ZZ}$ |
SIG(4) | $\sigma_{XY}$ |
SIG(5) | $\sigma_{XZ}$ |
SIG(6) | $\sigma_{YZ}$ |
31 for 2D analysis
24 for 3D analysis
Q(1) | current yield limit in tension |
Q(2) | equivalent plastic strain ($\epsilon$) |
Q(3) | equivalent VM type stress for this element |
Q(4) | $\sigma_{xx}$ in local axes of the element |
Q(5) | $\sigma_{yy}$ in local axes of the element |
Q(6) | $\sigma_{zz}$ in local axes of the element |
Q(7) | $\sigma_{xy}$ in local axes of the element |
Q(8) | $\sigma_{1}$ anti-hourglass stress |
Q(9) | $\sigma_{2}$ anti-hourglass stress |
Q(10 to 13) | x nodal coordinates in local axes of the element |
Q(14 to 17) | y nodal coordinates in local axes of the element |
Q(18) | 0 in plane state average radius (Xcoordinate) of the element in axisymmetric state |
Q(19) | area of the element in the XY plane |
Q(20) | area of the no deformed element |
Q(21) | X(4) - X(2) in initial structure |
Q(22) | X(3) - X(1) in initial structure |
Q(23) | Y(4) - Y(2) in initial structure |
Q(24) | Y(4) - Y(2) in initial structure |
Q(25) | $A_{11}$ parameter of anisotropy |
Q(26) | $A_{12}$ parameter of anisotropy |
Q(27) | $A_{13}$ parameter of anisotropy |
Q(28) | $A_{22}$ parameter of anisotropy |
Q(29) | $A_{23}$ parameter of anisotropy |
Q(30) | $A_{33}$ parameter of anisotropy |
Q(31) | $A_{44}$ parameter of anisotropy |
For 3D analysis:
Q(1) | current yield limit tension |
Q(2) | equivalent plastic strain ($\overline{\varepsilon}^{p}$) |
Q(3) | equivalent VM type stress for this element |
Q(4) | $\sigma_{11}$ anti-hourglass stress |
Q(5) | $\sigma_{12}$ anti-hourglass stress |
Q(6) | $\sigma_{13}$ anti-hourglass stress |
Q(7) | $\sigma_{21}$ anti-hourglass stress |
Q(8) | $\sigma_{22}$ anti-hourglass stress |
Q(9) | $\sigma_{23}$ anti-hourglass stress |
Q(10) | $\sigma_{31}$ anti-hourglass stress |
Q(11) | $\sigma_{32}$ anti-hourglass stress |
Q(12) | $\sigma_{33}$ anti-hourglass stress |
Q(13) | $\sigma_{41}$ anti-hourglass stress |
Q(14) | $\sigma_{42}$ anti-hourglass stress |
Q(15) | $\sigma_{43}$ anti-hourglass stress |
Q(16) | $A_{11}$ parameter of anisotropy |
Q(17) | $A_{12}$ parameter of anisotropy |
Q(18) | $A_{13}$ parameter of anisotropy |
Q(19) | $A_{22}$ parameter of anisotropy |
Q(20) | $A_{23}$ parameter of anisotropy |
Q(21) | $A_{33}$ parameter of anisotropy |
Q(22) | $A_{44}$ parameter of anisotropy |
Q(23) | $A_{55}$ parameter of anisotropy |
Q(24) | $A_{66}$ parameter of anisotropy |