This is an old revision of the document!
2D hydraulic microscopic law for solid elements.
Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).
This law replaces the macroscopic fluid law, by considering a complete hydraulic microstructure, made of dominant horizontal bedding planes, vertical bridging planes and matrix blocks. Under the assumption of the spatial repeticion of the microstructure over the distance $w$, a Representative Element Volume (REV) is built, including fractures and tubes whose behaviours are governed by constitutive laws. Fluid pressures and fluxes are computed at the microscopic scale in that hydraulic network. This way, the law is used for water seepage, air seepage, diffusion and advection (coupled) under non-linear analysis in 2D porous media. Effects of mechanics on the flow are implicitely integrated into the microscale model by means of hydro-mechanical couplings.
\[ \underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w \vec{q_l})}_{\text{Liquid water}} = 0 \]
From Darcy's law, the advective component of the liquid water flow respectively reads for a fracture and a tube:
\[
\vec{q_l} = - \frac{k_{r_w}}{\mu_w}\frac{1}{A}\kappa\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y)\right]\]
where
\[
\kappa
= {}
\begin{cases}
-\frac{h_b^2}{12}h_b \cdot w, fracture\\
-\pi \frac{D^4}{128}, tube\\
\end{cases}
\]
\[
k_{r_w}
=
\begin{cases}
\frac{S_{r}^{*^2}}{2}(3-S_{r}^{*}), fracture\\
S_{r}^{*^2}, tube
\end{cases}
\]
\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) + div(\vec{i_a}) = 0\]
From Darcy's law, the advective component of the liquid water flow respectively reads for a fracture and a tube:
\[
\vec{q_g} = - \frac{k_{r_g}}{\mu_g}\frac{1}{A}\kappa\left[ \vec{grad}(p_g) + g \rho_g \vec{grad}(y)\right]\]
where
\[
\kappa
= {}
\begin{cases}
-\frac{h_b^2}{12}h_b \cdot w, fracture\\
-\pi \frac{D^4}{128}, tube\\
\end{cases}
\]
\[
k_{r_g}
=
\begin{cases}
(1-S_{r}^*)^3, fracture\\
(1-S_{r}^*)^2, tube
\end{cases}
\]
From Fick's law, the diffusive component of the dissolved air flow respectively reads for a fracture and a tube: \[ \vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} (\omega_a) \]
where $\omega_a = \rho_a/\rho_g$.
Prepro: LHMIC.F & EHMICA.F
Lagamine: HMIC.F & EHMICB.F
Plane stress state | NO |
Plane strain state | YES |
Axisymmetric state | YES |
3D state | YES |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 628 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (4I10) | |
---|---|
NLAWFEM2 | Number of constitutive laws at the sub-scale |
KFLU | Number of DOF: 1=Pw, 2=Pw+Pg |
IGAS | Type of gas: 0=Air, 1=H2, 2=N2, 3=Ar, 4=He, 5=CO2, 6=CH4 |
IDIFF | Activation of diffusion mechanism: 0=No, 1=Yes, |
Line 2 (1G10.0) | |
FACONV | Units of conversion of the REV (it has a size of 1 [-]) |
Line 1 (5G10.0) | |
---|---|
VISCW0 | Liquid dynamic viscosity $(=\mu_{w,0})\ \left[ Pa.s \right]$ |
RHOW0 | Liquid density $(=\rho_{w,0})\ \left[ kg.m^{-3}\right]$ |
UXHIW | Liquid compressibility coefficient $(=1/ \chi_{w})\ \left[ Pa^{-1}\right]$ |
PW0 | Initial water pressure $\left[ Pa\right]$ |
T0 | Initial temperature $\left[ K\right]$ |
Line 2 (3E10.2,2G10.0) | |
VISCA0 | Gas dynamic viscosity $(=\mu_{a,0})\ \left[Pa.s \right]$ |
RHOA0 | Gaz density $(=\rho_{a,0})\ \left[kg.m^{-3}\right]$ |
PMGAS | Gas molar mass $[g/mol]$ |
PA0 | Initial gas pressure $\left[ Pa\right]$ |
PHENRY | Henry coefficient $\left[ -\right]$ |
To be repeated as many time as NLAWFEM2.
Line 1 (7I5) | |
---|---|
ILAW2 | No. of the sub-scale constitutive law (=1:NLAWFEM2) |
ITYPE2 | Type of sub-scale law: 1=Fracture (manual), 2=Fracture (automatic), 3=Tube (manual), 4=Tube (automatic), 5=Bridge (manual), 6=Bridge (automatic) |
ISR | Retention curve: 1=Brooks-Corey for fracture, 2=Brooks-Corey for tube, 3=van Genuchten for fracture, 4=van Genuchten for tube |
IKW | Water relative permeability curve |
IKA | Gas relative permeability curve |
INUMEL2 | Number of micro-elements with this law |
ICONST | Constant element opening: 0=No, 1=Yes |
Line 2 - Retention curve coefficients (4G10.0) | |
PE0 | Initial air entry pressure of the micro-element |
CDF | Exponent parameter |
SRES | Residual saturation degree $(=S_{res})$ |
SRG0 | Initial gas saturation |
AKRMIN | Minimum value of relative permeability |
SRFIELD | Field saturation degree $(=S_{r, field})$ |
CDF2 | Exponent parameter |
CSR8 | 8th parameter of ISR |
Line 3 - Fracture law coefficients (4G10.0) | |
AKP | Stiffness parameter of the material |
GAMMA | Exponent parameter |
DINI | Initial aperture |
DMAX | Maximum aperture |
Line 3 - Tube law coefficients (3G10.0) | |
DINI | Initial aperture |
DMAX | Maximum aperture |
TORT | Tortuosity |
28
In 2D state :
SIG(1) | $\sigma_x$ (unused) | |
SIG(2) | $\sigma_y$ (unused) | |
SIG(3) | $\sigma_{xy}$ (unused) | |
SIG(4) | $\sigma_z$ (unused) | |
SIG(5) | Homogenised liquid flow along $x$ $(=f_{wx})$ | |
SIG(6) | Homogenised liquid flow along $y$ $(=f_{wy})$ | |
SIG(7) | Homogenised liquid flow stored $(=f_{we})$ | |
SIG(5) | gas total velocity in the X direction $(=f_{ax})$ | gas advection + gas diffusion + dissolved gas advection + dissolved gas diffusion |
SIG(6) | gas total velocity in the Y direction $(=f_{ay})$ | |
SIG(7) | gas total velocity stored $(=f_{ae})$ | |
SIG(11) | Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,b})$ | |
SIG(12) | Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,b})$ | |
SIG(13) | Homogenised gas flow along $x$ $(=f_{gx})$ | |
SIG(14) | Homogenised gas flow along $y$ $(=f_{gy})$ | |
SIG(15) | Homogenised gas flow stored $(=f_{ge})$ | |
SIG(16) | Advective flow of dissolved gas along $x$ (unused) | |
SIG(17) | Advective flow of dissolved gas along $y$ (unused) | |
SIG(18) | Unused | |
SIG(19) | Unused | |
SIG(20) | Unused | |
SIG(21) | Unused | |
SIG(22) | Unused | |
SIG(23) | Unused | |
SIG(24) | Unused | |
SIG(25) | Unused | |
SIG(26) | Unused | |
SIG(27) | Unused | |
SIG(28) | Unused |
10 + 5*(Number of Subscale Nodes)
/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg
Q(1) | Liquid water mass at the RVE |
Q(2) | Pollutant mass at the RVE |
Q(3) | Gaseous air mass at the RVE |
Q(4) | Homogenised macroscale porosity |
Q(5) | Water saturation degree |
Q(6) | Homogenised water relative permeability |
Q(7) | Homogenised gas relative permeability |
Q(8) | Homogenised macroscale tortuosity |
Q(9) | Vapour mass at the RVE (unused) |
Q(10) | Homogenised succion |
Q(11 + (i-1)*5) | $X_i$ |
Q(11 + (i-1)*5 +1) | $Y_i$ |
Q(11 + (i-1)*5 +2) | $P_{w,i}$ |
Q(11 + (i-1)*5 +3) | $C_i$ |
Q(11 + (i-1)*5 +4) | $P_{g,i}$ |