User Tools

Site Tools


laws:bodam

BODAM

Description

Elastic-visco-plastic constitutive law for solid elements at constant temperature (Bodner model) with damage.

The model

This law is used for mechanical analysis of elastic-visco-plastic isotropic solids undergoing large strains. Strain rate effects and isotropic and directional hardening or recovery are included.

Files

Prepro: LBODAM.F
Lagamine: BODA2E.F, BODA2A.F, BODA3D.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 505
COMMNT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (I5)
NINTV > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : NINTV will be calculated in the law

Real parameters

FIXME Old versions (prior to 2019) of the code and the manual indicate Line 1 & Line 2 to be one single line, which is not possible considering the format (7G10.0); old data files may not be compatible with more recent versions of the code.

Line 1 (7G10.0)
E YOUNG's elastic modulus
ANU POISSON's ratio
D0 Assumed limiting plastic-shear strain rate ($D_0$)
D1 Directional hardening coefficient ($D_1$)
RK0 Initial isotropic hardness ($K_0$)
RK1 Maximum or limiting isotropic hardness ($K_1$)
RK2 Minimum or stable isotropic hardness ($K_2$)
Line 2 (7G10.0)
A1 Recovery coefficient of isotropic hardness ($A_1$)
A2 Recovery coefficient of directional hardness ($A_2$)
RM1 Hardening exponent of isotropic hardness ($m_1$)
RM2 Hardening exponent of directional hardness ($m_2$)
R1 Recovery exponent of isotropic hardness ($r_1$)
R2 Recovery exponent of directional hardness ($r_2$)
RN Strain rate sensitivity coefficient ($n$)
Line 3 (7G10.0)
A Constant dividing the stress ($A$)
S Exponent of the stress function ($s$)
THOLD Threshold stress value ($\sigma_D$)
R Exponent of equivalent plastic strain rate ($r$)
TAUCO Ratio between deviatoric and isotropic damage ($\tau$)
BETA Constant in the triaxial stress function ($\beta$)
DSMAX Failure value of deviatoric damage

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

= 22 for the 3D state
= 20 for the other cases

List of state variables

N = 10 for 3D state
N = 8 for other cases

Q(1) Element thickness ($t$) in plane stress state
= 1 : Plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
= 0 in 3D state
= Element thickness ($t$) in generalized plane state
Q(2) Current equivalent stress in tension
Q(3) Current isotropic hardness; its initial value is $K_0$
Q(4) Equivalent directional hardness
Q(5)$\rightarrow$Q(N) Components of directional hardness
Q(N+1) Equivalent strain
Q(N+2) Deviatoric damage
Q(N+3) Bulk damage
Q(N+4$\rightarrow$N+9) Fracture criteria (not programmed)
Q(N+10) NINTV
Q(N+11) $\dot{d}$
Q(N+12) = 0 if $d<d_{max}$
= 1 if $d\geq d_{max}$
laws/bodam.txt · Last modified: 2020/08/25 15:46 (external edit)