User Tools

Site Tools


laws:zizou

ZIZOU

Description

Cap-model elasto-plastic + cap-model visco-plastic constitutive laws for solid elements at constant temperature with influence of lode angle and suction

The model

This law is used for mechanical analysis of elastoplastic‑viscoplastic isotropic porous media undergoing large strains.

Files

Prepro: LZIZOU.F
Lagamine: ZIZOU.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 46
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (12I5)
NINTV > 0 : number of sub-steps used to integrate numerically the constitutive equation in a time step.
= 0 : NINTV will be calculated in the law with DIV = $5.10^{-3}$
ISOL = 0 : use of total stresses in the constitutive law
≠ 0 : use of effective stresses in the constitutive law. See appendix 8
IELA = 0 : Linear elasticity
> 0 : Non linear elasticity
IELAS = 0: Constant KAPPAS
> 0: Variable KAPPAS
ILODEF Shape of the yield surface in the deviatoric plane :
= 1 : circle in the deviatoric plane
= 2 : smoothed irregular hexagon in the deviatoric plane
ILODEG Not used : Associated plasticity
ITRACT = 0 : No traction limitation
≠ 0 : Traction stresses limitation
IECPS = 0 : $\psi$ is defined with PSIC and PSIE
= 1 : $\psi$ is defined with PHMPS
ICBIFComputation indice of bifurcation criterion
= 0 : non computed
= 1 : computed (plane strain state only
KMETH = 2 : actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value)
IPCONS = 0 Definition of pre-consolidation pressure
≠ 0 Definition of OCR
ILC = 0: Barcelona LC curve
≠ 0: Pasachalk LC curve

Real parameters

Parameters and internal variables for elasto-plastic model

Line 1 (5G10.0)
E_PAR1First elastic parameter
E_PAR2Second elastic parameter
E_PAR3Third elastic parameter
E_PAR4Fourth elastic parameter
HARD_EPHardening parameter
Line 2 (3G10.0)
PCONS0_EPPreconsolidation pressure (If IPCONS0=0)
OCR_EPOver Consolidation Ratio (If IPCONS0<>0, see section 6.5
AI1MIN_EPMinimum value of $I_\sigma$ for non-linear elasticity
Line 3 (3G10.0)
PSIC_EPCoulomb's angle (in degrees) for compressive paths
PSIE_EPCoulomb's angle (in degrees) for extensive paths
PHMPS_EPVan Eekelen exponent (default value=-0.229)
Line 4 (5G10.0)
PHIC0_EPInitial Coulomb’s angle (in degrees) for compressive paths
PHICF_EPFinal Coulomb’s angle (in degrees) for compressive paths
BPHI_EP Only if there is hardening/softening
PHIE0_EPInitial Coulomb’s angle (in degrees) for extensive paths
PHIEF_EPFinal Coulomb’s angle (in degrees) for extensive paths (psi ILODEF = 2)
Line 5 (5G10.0)
AN_EPVan Eekelen exponent (default value=-0.229)
COH0_EPInitial value of cohesion
COHF_EPFinal value of cohesion
BCOH_EPOnly if there is hardening/softening
TRACTION_EPLimit of the traction stress (Only if ITRACT <>0 )
Line 6 (4G10.0)
POROS_EPInitial soil porosity ($n_o$)
RHO_EPSpecific mass
DIV_EPParameter for the computation of NINTV in the law (for NINTV=0 only)
BIOPT_EPBifurcation computation parameter
Line 7 (5G10.0)
S0_EPYield limit in term of suction (SI curve)
PCRATIO_EPRelative Reference pressure PCONS0/PC for the definition of the LC curve
RRATIO_EPMax soil stiffness
BETA_EPBeta soil stiffness parameter
LAMBDA-S_EPPlastic suction coefficient
Line 8 (5G10.0)
KAPPA-S_EPElastic suction coefficient
PATM_EPAtmospheric pressure
k_EP Evolution of cohesion with suction ($c(s) = c(0) + k.s$)
AKAPPAS1_EPFirst parameter of KAPPAS formulation
AKAPPAS2_EPSecond parameter of KAPPAS formulation

Parameters and internal variables for visco-plastic model

Line 1 (5G10.0)
E_PAR1First elastic parameter
E_PAR2Second elastic parameter
E_PAR3Third elastic parameter
E_PAR4Fourth elastic parameter
HARD_VPHardening parameter
Line 2 (3G10.0)
PCONS0_VPPreconsolidation pressure (If IPCONS0=0)
OCR_VPOver Consolidation Ratio (If IPCONS0<>0, see section 6.5
AI1MIN_VP = Minimum value of $I_\sigma$ for non-linear elasticity
Line 3 (3G10.0)
PSIC_VPCoulomb's angle (in degrees) for compressive paths
PSIE_VPCoulomb's angle (in degrees) for extensive paths
PHMPS_VPVan Eekelen exponent (default value=-0.229)
Line 4 (5G10.0)
PHIC0_VPInitial Coulomb’s angle (in degrees) for compressive paths
PHICF_VPFinal Coulomb’s angle (in degrees) for compressive paths
BPHI_VPOnly if there is hardening/softening
PHIE0_VPInitial Coulomb’s angle (in degrees) for extensive paths
PHIEF_VPFinal Coulomb’s angle (in degrees) for extensive paths (psi ILODEF = 2)
Line 5 (5G10.0)
AN_VPVan Eekelen exponent (default value=-0.229)
COH0_VPInitial value of cohesion
COHF_VPFinal value of cohesion
BCOH_VPOnly if there is hardening/softening
TRACTION_VPLimit of the traction stress (Only if ITRACT <>0 )
Line 6 (4G10.0)
POROS_VPInitial soil porosity ($n_o$)
RHO_VPSpecific mass
DIV_VPParameter for the computation of NINTV in the law (for NINTV = 0 only)
BIOPT_VPBifurcation computation parameter
Line 7 (5G10.0)
S0_VPYield limit in term of suction (SI curve)
PCRATIO_VPRelative Reference pressure PCONS0/PC for the definition of the LC curve
RRATIO_VPMax soil stiffness
BETA_VPBeta soil stiffness parameter
LAMBDA-S_VPPlastic suction coefficient
Line 8 (5G10.0)
KAPPA-S_VP Elastic suction coefficient
PATM_VPAtmospheric pressure
k_VPEvolution of cohesion with suction ($c(s) = c(0) + k.s$)
AKAPPAS1_VPFirst parameter of KAPPAS formulation
AKAPPAS2_VPSecond parameter of KAPPAS formulation
Line 9 - Visco_parameters for Cap (3G10.0)
ALPHACViscoplastic parameter for $\Phi_C = ( f_c /p())* * \alpha_c$
OMEGAViscosity parameter for $\gamma_c$
AIOTViscosity parameter for $\gamma_c$
Line 10 - Visco_parameters for friction (2G10.0)
ALPHADparameter $\alpha_d$ for $\Phi_d = \left( \frac{f_d}{p_0} \right)^{\alpha_d}$
A2Dparameter $\alpha_d$ for $\gamma_d = a_2 \gamma_c$

Stresses

Number of stresses

= 6 : for 3D state
= 4 : for the other cases.

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the other cases :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

= 68 : for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
= 57 : in all the other cases

List of state variables

Q(1) = 1 in plane strain state
= circumferential strain rate ($\dot{\varepsilon_{\theta}}$) in axisymmetrical state
= THICK_EP
Q(2)actualised specific mass = RHO_EP
Q(3) = 0 if the current state is elastic
= 1 if the current state is elasto-plastic (Friction mechanism)
= 2 if the current state is elasto-plastic (Pore collapse mechanism)
= 3 if the current state is elasto-plastic (Traction mechanism)
= 4 if the current state is elasto-plastic (Friction + pore mechanisms)
= 5 if the current state is elasto-plastic (Friction + traction mechanisms)
Q(4)plastic work per unit volume ($W^p$)
Q(5)Actualised value of porosity = PORO0_EP
Q(6)equivalent strain $n^o$1 $\varepsilon_{eq1} = \int \Delta \dot{\varepsilon}_{eq}\Delta t$
Q(7)Updated value of preconsolidation pressure $p_0$
PCONS0_EP
Q(8)equivalent strain indicator $n^o 1$ (Villote $n^o 1$) $\alpha_1 = (\Delta\dot{\varepsilon}_{eq}\Delta t ) / \varepsilon_{eq1}$
Q(9)X deformation
Q(10)Y deformation
Q(11)Z deformation
Q(12)XY deformation
Q(13)Volumetric strain
Q(14)Deviatoric strain
Q(15)Actualised value of cohesion = COH0_EP
Q(16)Actualised value of frictional angle in compression path ($\phi_C$)
PHIC0_EP
Q(17)Actualised value of frictional angle in compression path ($\phi_E$)
PHIE0_EP
Q(18)APEX criterion
Q(19)Actualised value of ALAMBDAS = ALAMBDAS_EP
Q(20)Actualised value of AKAPPAS = AKAPPAS_EP
Q(21)Actualised value of $S_0$ = S0_EP
Q(22)Absolute value of reference pressure $P_C$
Q(23)PCONS0
Q(24)number of sub-intervals used for the integration
Q(25)number of interation used for the integration
Q(26)Cubic modulus
Q(27)Shear modulus
Q(28)OVERS
Q(29)THICK_VP
Q(30)RHO_VP
Q(33)POROS0_VP
Q(35)PCONS0_VP
Q(43)COH0_VP
Q(44)PHIC0_VP
Q(45)PHIE0_VP
Q(47)ALAMBDAS_VP
Q(48)AKAPPAS_VP
Q(49)S0_EP
Q(59)$\rightarrow$Q(68)reserved for bifurcation

Hardening forms

ITYLA = 2 : Volumetric strain hardening
$dp_0$ = -ECRO $p_0\varepsilon_v^p$
Sign dependent on the consolidation stress.
Softening is possible.

Elastic forms

IELA = 0 : Linear elasticity
E_PAR1 = E : Young’s Elastic modulus
E_PAR2 = ANU : Poisson’s ratio
E_PAR3 = not used
E_PAR4 = not used
HARD = ECRO : Hardening parameter

IELA = 1 : Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = ANU : Poisson’s ratio
E_PAR3 = not used
E_PAR4 = not used
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 2 : Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = G0 : Shear modulus
E_PAR3 = not used
E_PAR4 = not used
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 3 : Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = K0 : Minimum value of the bulk modulus
E_PAR3 = G0 : Shear modulus
E_PAR4 = ALPHA2 :
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 4 : Non Linear elasticity
E_PAR1 = K0 : Minimum value of the bulk modulus
E_PAR2 = n : n parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD
ECRO=HARD

IELA = 5 : Non Linear elasticity
E_PAR1 = $\nu$ : Poisson’s ratio
E_PAR2 = n : n parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD
ECRO=HARD

IPCONS parameter

IPCONS = 0 : $p_0 = PCONS0$
IPCONS = 1 : $p_0 = \sigma_v . OCR$
IPCONS = 0 : $p_0 = p_0(\sigma,\text{cohesion}, \phi) . OCR$

Where $p_0(\sigma,\text{cohesion},\phi) = \left[ \frac{-II_{\widehat{\sigma}}^2}{m^2(I_{\sigma}-\frac{3c}{tg\phi})} - I_{\sigma} \right] / 3$

laws/zizou.txt · Last modified: 2020/08/25 15:46 (external edit)