User Tools

Site Tools


laws:hmic

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hmic [2023/11/24 13:27]
gilles [Integer parameters]
laws:hmic [2023/12/12 16:03] (current)
gilles [Description]
Line 2: Line 2:
 ===== Description ===== ===== Description =====
 2D hydraulic microscopic law for solid elements.\\ 2D hydraulic microscopic law for solid elements.\\
-Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).+Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).\\ \\ 
 + 
 +The law definition and typical values of parameters for clays can be found in Corman (2024)((Corman,​ G. (2024). Hydro-mechanical modelling of gas transport processes in clay host rocks in the context of a nuclear waste repository. PhD thesis, University of Liège. https://​hdl.handle.net/​2268/​307996)).
  
  
Line 108: Line 110:
  
 ==== Real parameters ==== ==== Real parameters ====
-^ Line 1 (3E10.2,2G10.0) ^^+^ Line 1 (5G10.0) ^^
 |VISCW0|Liquid dynamic viscosity $(=\mu_{w,​0})\ \left[ Pa.s \right]$| |VISCW0|Liquid dynamic viscosity $(=\mu_{w,​0})\ \left[ Pa.s \right]$|
 |RHOW0|Liquid density $(=\rho_{w,​0})\ \left[ kg.m^{-3}\right]$| |RHOW0|Liquid density $(=\rho_{w,​0})\ \left[ kg.m^{-3}\right]$|
Line 114: Line 116:
 |PW0|Initial water pressure $\left[ Pa\right]$| |PW0|Initial water pressure $\left[ Pa\right]$|
 |T0|Initial temperature $\left[ K\right]$| |T0|Initial temperature $\left[ K\right]$|
-^ Line 2 (1G10.0) ^^ +^ Line 2 (3E10.2,​2G10.0) ^^
-|CPINI|Initial pollutant concentration $\left[ -\right]$| +
-^ Line 3 (3E10.2,​2G10.0) ^^+
 |VISCA0|Gas dynamic viscosity $(=\mu_{a,​0})\ \left[Pa.s \right]$| |VISCA0|Gas dynamic viscosity $(=\mu_{a,​0})\ \left[Pa.s \right]$|
 |RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$| |RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$|
 |PMGAS|Gas molar mass $[g/mol]$| |PMGAS|Gas molar mass $[g/mol]$|
 |PA0|Initial gas pressure $\left[ Pa\right]$| |PA0|Initial gas pressure $\left[ Pa\right]$|
-|PHENRY|Henry coefficient| +|PHENRY|Henry coefficient ​$\left[ -\right]$| 
-^ Line (1I10) ^^ + 
-|IVAP|= 1 for vapour, = 0 if liquid water only (VAPOUR NOT IMPLEMENTED YET)+==== Sub-scale parameters ==== 
-^ Line 5 (3I10^^ +To be repeated as many time as NLAWFEM2. 
-|ISR|Retention curve (=53 for Van Genuchten ​with hysteresis)+^ Line (7I5) ^^ 
-|IKW|Water relative permeability curve (=7 for Van Genuchten)+|ILAW2|No. of the sub-scale constitutive law (=1:​NLAWFEM2)| 
-|IKA|Gas relative permeability curve (=6 for Van Genuchten)| +|ITYPE2|Type of sub-scale law: 1=Fracture (manual)2=Fracture ​(automatic), 3=Tube (manual), 4=Tube (automatic), ​5=Bridge ​(manual), 6=Bridge (automatic)| 
-^ Line 6 (3G10.0)^^ +|ISR|Retention curve: 1=Brooks-Corey ​for fracture, 2=Brooks-Corey for tube, 3=van Genuchten ​for fracture, 4=van Genuchten for tube
-|CKW1|First parameter ​of IKW+|IKW|Water relative permeability curve | 
-|CKW2|Second paremeter of IKW| +|IKA|Gas relative permeability curve| 
-|CKW3|Third parameter of IKW| +|INUMEL2|Number ​of micro-elements with this law
-^ Line 7 (2G10.0)^^ +|ICONST|Constant element opening: ​0=No, 1=Yes
-|CKA1|First parameter of IKA| +^ Line 2 - Retention curve coefficients ​(4G10.0) ^^ 
-|CKA2|Second parameter of IKA+|PE0|Initial air entry pressure ​of the micro-element
-^ Line (5G10.0)^^ +|CDF|Exponent ​parameter|
-|CSR1|First parameter ​of ISR+
-|CSR2|Second ​parameter ​of ISR| +
-|CSR3|Third parameter of ISR| +
-|CSR4|Fourth parameter of ISR| +
-|CSR5|Fifth parameter of ISR| +
-^ Line 9 (5G10.0)^^+
 |SRES|Residual saturation degree $(=S_{res})$| |SRES|Residual saturation degree $(=S_{res})$|
 +|SRG0|Initial gas saturation|
 +|AKRMIN|Minimum value of relative permeability|
 |SRFIELD|Field saturation degree $(=S_{r, field})$| |SRFIELD|Field saturation degree $(=S_{r, field})$|
-|AIREV|Air entry pressure $\left[Pa\right]$+|CDF2|Exponent parameter
-|AKRMIN|Minimum value of relative permeabikity| +|CSR8|8th parameter ​of ISR
-|SRINI|Initial saturation degree| +^ Line 3 - Fracture law coefficients ​(4G10.0) ^^ 
- +|AKP|Stiffness parameter ​of the material
-==== Subscale parameters ==== +|GAMMA|Exponent parameter| 
-To be repeated as many time as NLAWFEM2. +|DINI|Initial aperture| 
-^ Line (2I5) ^^ +|DMAX|Maximum aperture
-|ILAW2|Number ​of the subscale constitutive law (=1:​NLAWFEM2)+^ Line 3 - Tube law coefficients ​(3G10.0) ^^ 
-|ITYPE2|Type of subscale law (=1 for Hydraulic pollutant microscale law)+|DINI|Initial aperture
-^ Line (4G10.0) ^^ +|DMAX|Maximum aperture
-|POROS|Material porosity ($=n$)+|TORT|Tortuosity|
-|PERMINT|Material intrinsic permeability ($=k_{int}$) $[m^2]$+
-|DIFFC|Material diffusion coefficient of the pollutant ($D_{app}$) $[m^2/​s]$| +
-|TORTU|Material tortuosity ($=\tau$)|+
  
 ===== Stresses ===== ===== Stresses =====
Line 171: Line 164:
 |SIG(6)|Homogenised liquid flow along $y$ $(=f_{wy})$| |SIG(6)|Homogenised liquid flow along $y$ $(=f_{wy})$|
 |SIG(7)|Homogenised liquid flow stored $(=f_{we})$| |SIG(7)|Homogenised liquid flow stored $(=f_{we})$|
-|SIG(8)|Homogenised ​mean flow of the pollutant ​along $x$ $(=(f_{px,​a}+f_{px,​b})/2)$| +|SIG(8)|Homogenised ​gas flow along $x$ $(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion
-|SIG(9)|Homogenised ​mean flow of the pollutant ​along $y$ $(=(f_{py,a}+f_{py,​b})/​2)$| +|SIG(9)|Homogenised ​gas flow along $y$ $(=f_{ay})$|:::
-|SIG(10)|Homogenised ​pollutant ​flow stored ​(takes advection into account) ​$(=f_{pe})$| +|SIG(10)|Homogenised ​gas flow stored $(=f_{ae})$|:::
-|SIG(11)|Homogenised diffusive ​flow of the pollutant ​along $x$ for the current step $(=f_{px,b})$| +|SIG(11)|Advection dissolved gas flow along $x$ $(=f_{ad,x})$| 
-|SIG(12)|Homogenised diffusive ​flow of the pollutant ​along $y$ for the current step $(=f_{py,b})$| +|SIG(12)|Advection dissolved gas flow along $y$ $(=f_{ad,y})$| 
-|SIG(13)|Homogenised ​gas flow along $x$ $(=f_{gx})$| +|SIG(13)|Diffusion dissolved ​gas flow along $x$ $(=f_{add,x})$| 
-|SIG(14)|Homogenised ​gas flow along $y$ $(=f_{gy})$| +|SIG(14)|Diffusion dissolved ​gas flow along $y$ $(=f_{add,y})$| 
-|SIG(15)|Homogenised ​gas flow stored ​$(=f_{ge})$| +|SIG(15)|Advection gaseous ​gas flux along $x$ $(=f_{ag,x})$| 
-|SIG(16)|Advective flow of dissolved ​gas along $x$ (unused)| +|SIG(16)|Advection gaseous ​gas flux along $y$ $(=f_{ag,y})$
-|SIG(17)|Advective flow of dissolved gas along $y$ (unused)|+|SIG(18)|Unused|
 |SIG(18)|Unused| |SIG(18)|Unused|
 |SIG(19)|Unused| |SIG(19)|Unused|
Line 195: Line 188:
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-10 + 5*(Number of Subscale Nodes)\\ +=6 in 2D cases
-/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg+
 ==== List of state variables ==== ==== List of state variables ====
-|Q(1)|Liquid water mass at the RVE+|Q(1)|Unused
-|Q(2)|Pollutant mass at the RVE+|Q(2)|Unused
-|Q(3)|Gaseous air mass at the RVE+|Q(3)|Homogenised macro-scale porosity
-|Q(4)|Homogenised ​macroscale porosity+|Q(4)|Homogenised ​macro-scale saturation
-|Q(5)|Water ​saturation degree+|Q(5)|Water ​storage
-|Q(6)|Homogenised water relative permeability+|Q(6)|Gas storage
-|Q(7)|Homogenised gas relative permeability+|Q(7)|Saved fracture aperture of the current step (from 7 to 7+nico)
-|Q(8)|Homogenised macroscale tortuosity+|Q(8)|Unused
-|Q(9)|Vapour mass at the RVE (unused)+|Q(9)|Unused
-|Q(10)|Homogenised succion+|Q(10)|Unused
-|Q(11 + (i-1)*5)|$X_i$+|Q(11)|Unused
-|Q(11 + (i-1)*5 +1)|$Y_i$| +|Q(12)|Unused|
-|Q(11 + (i-1)*5 +2)|$P_{w,​i}$| +
-|Q(11 + (i-1)*5 +3)|$C_i$| +
-|Q(11 + (i-1)*5 +4)|$P_{g,i}$|+
  
laws/hmic.1700828832.txt.gz · Last modified: 2023/11/24 13:27 by gilles