This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
laws:hmic [2023/11/24 13:27] gilles [Integer parameters] |
laws:hmic [2023/12/12 16:03] (current) gilles [Description] |
||
---|---|---|---|
Line 2: | Line 2: | ||
===== Description ===== | ===== Description ===== | ||
2D hydraulic microscopic law for solid elements.\\ | 2D hydraulic microscopic law for solid elements.\\ | ||
- | Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale). | + | Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).\\ \\ |
+ | |||
+ | The law definition and typical values of parameters for clays can be found in Corman (2024)((Corman, G. (2024). Hydro-mechanical modelling of gas transport processes in clay host rocks in the context of a nuclear waste repository. PhD thesis, University of Liège. https://hdl.handle.net/2268/307996)). | ||
Line 108: | Line 110: | ||
==== Real parameters ==== | ==== Real parameters ==== | ||
- | ^ Line 1 (3E10.2,2G10.0) ^^ | + | ^ Line 1 (5G10.0) ^^ |
|VISCW0|Liquid dynamic viscosity $(=\mu_{w,0})\ \left[ Pa.s \right]$| | |VISCW0|Liquid dynamic viscosity $(=\mu_{w,0})\ \left[ Pa.s \right]$| | ||
|RHOW0|Liquid density $(=\rho_{w,0})\ \left[ kg.m^{-3}\right]$| | |RHOW0|Liquid density $(=\rho_{w,0})\ \left[ kg.m^{-3}\right]$| | ||
Line 114: | Line 116: | ||
|PW0|Initial water pressure $\left[ Pa\right]$| | |PW0|Initial water pressure $\left[ Pa\right]$| | ||
|T0|Initial temperature $\left[ K\right]$| | |T0|Initial temperature $\left[ K\right]$| | ||
- | ^ Line 2 (1G10.0) ^^ | + | ^ Line 2 (3E10.2,2G10.0) ^^ |
- | |CPINI|Initial pollutant concentration $\left[ -\right]$| | + | |
- | ^ Line 3 (3E10.2,2G10.0) ^^ | + | |
|VISCA0|Gas dynamic viscosity $(=\mu_{a,0})\ \left[Pa.s \right]$| | |VISCA0|Gas dynamic viscosity $(=\mu_{a,0})\ \left[Pa.s \right]$| | ||
|RHOA0|Gaz density $(=\rho_{a,0})\ \left[kg.m^{-3}\right]$| | |RHOA0|Gaz density $(=\rho_{a,0})\ \left[kg.m^{-3}\right]$| | ||
|PMGAS|Gas molar mass $[g/mol]$| | |PMGAS|Gas molar mass $[g/mol]$| | ||
|PA0|Initial gas pressure $\left[ Pa\right]$| | |PA0|Initial gas pressure $\left[ Pa\right]$| | ||
- | |PHENRY|Henry coefficient| | + | |PHENRY|Henry coefficient $\left[ -\right]$| |
- | ^ Line 4 (1I10) ^^ | + | |
- | |IVAP|= 1 for vapour, = 0 if liquid water only (VAPOUR NOT IMPLEMENTED YET)| | + | ==== Sub-scale parameters ==== |
- | ^ Line 5 (3I10) ^^ | + | To be repeated as many time as NLAWFEM2. |
- | |ISR|Retention curve (=53 for Van Genuchten with hysteresis)| | + | ^ Line 1 (7I5) ^^ |
- | |IKW|Water relative permeability curve (=7 for Van Genuchten)| | + | |ILAW2|No. of the sub-scale constitutive law (=1:NLAWFEM2)| |
- | |IKA|Gas relative permeability curve (=6 for Van Genuchten)| | + | |ITYPE2|Type of sub-scale law: 1=Fracture (manual), 2=Fracture (automatic), 3=Tube (manual), 4=Tube (automatic), 5=Bridge (manual), 6=Bridge (automatic)| |
- | ^ Line 6 (3G10.0)^^ | + | |ISR|Retention curve: 1=Brooks-Corey for fracture, 2=Brooks-Corey for tube, 3=van Genuchten for fracture, 4=van Genuchten for tube| |
- | |CKW1|First parameter of IKW| | + | |IKW|Water relative permeability curve | |
- | |CKW2|Second paremeter of IKW| | + | |IKA|Gas relative permeability curve| |
- | |CKW3|Third parameter of IKW| | + | |INUMEL2|Number of micro-elements with this law| |
- | ^ Line 7 (2G10.0)^^ | + | |ICONST|Constant element opening: 0=No, 1=Yes| |
- | |CKA1|First parameter of IKA| | + | ^ Line 2 - Retention curve coefficients (4G10.0) ^^ |
- | |CKA2|Second parameter of IKA| | + | |PE0|Initial air entry pressure of the micro-element| |
- | ^ Line 8 (5G10.0)^^ | + | |CDF|Exponent parameter| |
- | |CSR1|First parameter of ISR| | + | |
- | |CSR2|Second parameter of ISR| | + | |
- | |CSR3|Third parameter of ISR| | + | |
- | |CSR4|Fourth parameter of ISR| | + | |
- | |CSR5|Fifth parameter of ISR| | + | |
- | ^ Line 9 (5G10.0)^^ | + | |
|SRES|Residual saturation degree $(=S_{res})$| | |SRES|Residual saturation degree $(=S_{res})$| | ||
+ | |SRG0|Initial gas saturation| | ||
+ | |AKRMIN|Minimum value of relative permeability| | ||
|SRFIELD|Field saturation degree $(=S_{r, field})$| | |SRFIELD|Field saturation degree $(=S_{r, field})$| | ||
- | |AIREV|Air entry pressure $\left[Pa\right]$| | + | |CDF2|Exponent parameter| |
- | |AKRMIN|Minimum value of relative permeabikity| | + | |CSR8|8th parameter of ISR| |
- | |SRINI|Initial saturation degree| | + | ^ Line 3 - Fracture law coefficients (4G10.0) ^^ |
- | + | |AKP|Stiffness parameter of the material| | |
- | ==== Subscale parameters ==== | + | |GAMMA|Exponent parameter| |
- | To be repeated as many time as NLAWFEM2. | + | |DINI|Initial aperture| |
- | ^ Line 1 (2I5) ^^ | + | |DMAX|Maximum aperture| |
- | |ILAW2|Number of the subscale constitutive law (=1:NLAWFEM2)| | + | ^ Line 3 - Tube law coefficients (3G10.0) ^^ |
- | |ITYPE2|Type of subscale law (=1 for Hydraulic pollutant microscale law)| | + | |DINI|Initial aperture| |
- | ^ Line 2 (4G10.0) ^^ | + | |DMAX|Maximum aperture| |
- | |POROS|Material porosity ($=n$)| | + | |TORT|Tortuosity| |
- | |PERMINT|Material intrinsic permeability ($=k_{int}$) $[m^2]$| | + | |
- | |DIFFC|Material diffusion coefficient of the pollutant ($D_{app}$) $[m^2/s]$| | + | |
- | |TORTU|Material tortuosity ($=\tau$)| | + | |
===== Stresses ===== | ===== Stresses ===== | ||
Line 171: | Line 164: | ||
|SIG(6)|Homogenised liquid flow along $y$ $(=f_{wy})$| | |SIG(6)|Homogenised liquid flow along $y$ $(=f_{wy})$| | ||
|SIG(7)|Homogenised liquid flow stored $(=f_{we})$| | |SIG(7)|Homogenised liquid flow stored $(=f_{we})$| | ||
- | |SIG(8)|Homogenised mean flow of the pollutant along $x$ $(=(f_{px,a}+f_{px,b})/2)$| | + | |SIG(8)|Homogenised gas flow along $x$ $(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion| |
- | |SIG(9)|Homogenised mean flow of the pollutant along $y$ $(=(f_{py,a}+f_{py,b})/2)$| | + | |SIG(9)|Homogenised gas flow along $y$ $(=f_{ay})$|:::| |
- | |SIG(10)|Homogenised pollutant flow stored (takes advection into account) $(=f_{pe})$| | + | |SIG(10)|Homogenised gas flow stored $(=f_{ae})$|:::| |
- | |SIG(11)|Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,b})$| | + | |SIG(11)|Advection dissolved gas flow along $x$ $(=f_{ad,x})$| |
- | |SIG(12)|Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,b})$| | + | |SIG(12)|Advection dissolved gas flow along $y$ $(=f_{ad,y})$| |
- | |SIG(13)|Homogenised gas flow along $x$ $(=f_{gx})$| | + | |SIG(13)|Diffusion dissolved gas flow along $x$ $(=f_{add,x})$| |
- | |SIG(14)|Homogenised gas flow along $y$ $(=f_{gy})$| | + | |SIG(14)|Diffusion dissolved gas flow along $y$ $(=f_{add,y})$| |
- | |SIG(15)|Homogenised gas flow stored $(=f_{ge})$| | + | |SIG(15)|Advection gaseous gas flux along $x$ $(=f_{ag,x})$| |
- | |SIG(16)|Advective flow of dissolved gas along $x$ (unused)| | + | |SIG(16)|Advection gaseous gas flux along $y$ $(=f_{ag,y})$| |
- | |SIG(17)|Advective flow of dissolved gas along $y$ (unused)| | + | |SIG(18)|Unused| |
|SIG(18)|Unused| | |SIG(18)|Unused| | ||
|SIG(19)|Unused| | |SIG(19)|Unused| | ||
Line 195: | Line 188: | ||
===== State variables ===== | ===== State variables ===== | ||
==== Number of state variables ==== | ==== Number of state variables ==== | ||
- | 10 + 5*(Number of Subscale Nodes)\\ | + | =6 in 2D cases |
- | /!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg | + | |
==== List of state variables ==== | ==== List of state variables ==== | ||
- | |Q(1)|Liquid water mass at the RVE| | + | |Q(1)|Unused| |
- | |Q(2)|Pollutant mass at the RVE| | + | |Q(2)|Unused| |
- | |Q(3)|Gaseous air mass at the RVE| | + | |Q(3)|Homogenised macro-scale porosity| |
- | |Q(4)|Homogenised macroscale porosity| | + | |Q(4)|Homogenised macro-scale saturation| |
- | |Q(5)|Water saturation degree| | + | |Q(5)|Water storage| |
- | |Q(6)|Homogenised water relative permeability| | + | |Q(6)|Gas storage| |
- | |Q(7)|Homogenised gas relative permeability| | + | |Q(7)|Saved fracture aperture of the current step (from 7 to 7+nico)| |
- | |Q(8)|Homogenised macroscale tortuosity| | + | |Q(8)|Unused| |
- | |Q(9)|Vapour mass at the RVE (unused)| | + | |Q(9)|Unused| |
- | |Q(10)|Homogenised succion| | + | |Q(10)|Unused| |
- | |Q(11 + (i-1)*5)|$X_i$| | + | |Q(11)|Unused| |
- | |Q(11 + (i-1)*5 +1)|$Y_i$| | + | |Q(12)|Unused| |
- | |Q(11 + (i-1)*5 +2)|$P_{w,i}$| | + | |
- | |Q(11 + (i-1)*5 +3)|$C_i$| | + | |
- | |Q(11 + (i-1)*5 +4)|$P_{g,i}$| | + | |