Orthotropic elastic constitutive law for solid elements at constant temperature.
This law is used for mechanical analysis of orthotropic elasticity undergoing large strains.
There are 9 independent parameters : $E_1$, $E_2$, $E_3$, $\nu_{12}$, $\nu_{13}$, $\nu_{23}$, $G_{12}$, $G_{13}$, $G_{23}$. The elastic compliance tensor is : \[D^e_{ijkl} = \begin{bmatrix} \frac{1}{E_1} & \frac{-\nu_{21}}{E_2} & \frac{-\nu_{31}}{E_3} & & & \\ \frac{-\nu_{12}}{E_1} & \frac{1}{E_2} & \frac{-\nu_{32}}{E_3} & & & \\ \frac{-\nu_{13}}{E_1} & \frac{-\nu_{23}}{E_2} & \frac{1}{E_3} & & & \\ & & & \frac{1}{2G_{12}} & & \\ & & & & \frac{1}{2G_{13}} & \\ & & & & & \frac{1}{2G_{23}}\\ \end{bmatrix}\]
The compliance elastic tensor is symmetric (Love, 1944), thus the equalities blow must be satisfied : \[\frac{\nu_{21}}{E_2} = \frac{\nu_{12}}{E_1} \quad , \quad \frac{\nu_{31}}{E_3} = \frac{\nu_{13}}{E_1} \quad , \quad \frac{\nu_{23}}{E_2} = \frac{\nu_{32}}{E_3} \]
Moreover, the strain energy function must be positive (i.e. the quadratic form is said positive definite) : \[\mathbf{U} = \frac{1}{2} \varepsilon_{ij}\varepsilon_{kl}C_{ijkl} > 0\]
Thus, the condition below must be satisfied : \[1 - \nu_{12}\nu_{21} > 0 \quad ; \quad 1 - \nu_{13}\nu_{31} > 0 \quad ; \quad 1 - \nu_{23}\nu_{32} > 0\]\[1-\nu_{12}\nu_{23}\nu_{31}-\nu_{21}\nu_{13}\nu_{32} - \nu_{12}\nu_{21} - \nu_{13}\nu_{31} - \nu_{23}\nu_{32} > 0 \]\[E_1 > 0 \quad ; \quad E_2 > 0 \quad ; \quad E_3 > 0\]\[G_1 > 0 \quad ; \quad G_2 > 0 \quad ; \quad G_3 > 0\]
By inverting the matrix, the elastic tensor is then :
\[C^e_{ijkl} = \begin{bmatrix}
\frac{1-\nu_{23}\nu_{32}}{E_2E_3det} & \frac{\nu_{21}+\nu_{31}\nu_{23}}{E_2E_3det} & \frac{\nu_{21}\nu_{32}+\nu_{31}}{E_2E_3det} & & & \\
\frac{\nu_{12}+\nu_{13}\nu_{32}}{E_1E_3det} & \frac{1-\nu_{13}\nu_{31}}{E_1E_3det} & \frac{\nu_{32}+\nu_{31}\nu_{12}}{E_1E_3det} & & & \\
\frac{\nu_{13}+\nu_{23}\nu_{12}}{E_1E_2det} & \frac{\nu_{23}+\nu_{21}\nu_{13}}{E_1E_2det} & \frac{1-\nu_{21}\nu_{12}}{E_1E_2det} & & & \\
& & & 2G_{12} & & \\
& & & & 2G_{13} & \\
& & & & & 2G_{23} \\
\end{bmatrix}\] with $det=\dfrac{1-\nu_{31}\nu_{13}-\nu_{21}\nu_{12}-\nu_{32}\nu_{23}-2\nu_{31}\nu_{12}\nu_{23}}{E_1E_2E_3}$
There are 5 independent parameters : ${E_{\parallel}}$, ${E_{\perp}}$, ${\nu_{\parallel\parallel}}$, ${\nu_{\parallel\perp}}$, ${G_{\parallel,\perp}}$.
From orthotropic elasticity let us consider ($e_1$,$e_2$) as the isotropic plane (bedding plane for sedimentary rock) and $e_3$ the normal to this plane. The subscripts ${\parallel}$ and $\perp$ indicates, respectively, the direction parallel to bedding and perpendicular to bedding. \[{E_1=E_2=E_{\parallel}}\quad , \quad {E_3=E_{\perp}}\]
The elastic compliance tensor becomes : \[D^e_{ijkl} = \begin{bmatrix} \frac{1}{E_{\parallel}} & \frac{-\nu_{\parallel\perp}}{E{\parallel}} & \frac{-\nu_{\perp\parallel}}{E_{\perp}} & & & \\ \frac{-\nu_{\parallel\parallel}}{E_{\parallel}} & \frac{1}{E_{\parallel}} & \frac{-\nu_{\perp\parallel}}{E_{\perp}} & & & \\ \frac{-\nu_{\parallel\perp}}{E_{\parallel}} & \frac{-\nu_{\parallel\perp}}{E_{\parallel}} & \frac{1}{E_{\perp}} & & & \\ & & & \frac{1}{2G_{\parallel\parallel}} & & \\ & & & & \frac{1}{2G_{\parallel\perp}} & \\ & & & & & \frac{1}{2G_{\parallel\perp}}\\ \end{bmatrix}\]
The compliance elastic tensor is symmetric (Love, 1944), thus the equalities blow must be satisfied : \[\frac{\nu_{\perp\parallel}}{E_{\perp}} = \frac{\nu_{\parallel\perp}}{E_{\parallel}}\]
In the isotropic plane, the shear modulus is obtained as follow : \[G_{\parallel\parallel} = \frac{E_{\parallel}}{2(1+\nu_{\parallel\parallel})}\]
Because of the symmetry of the stress and strain tensors : \[G_{\parallel\perp}=G_{\perp\parallel}\]
The Hooke’s law is defined in the orthotropic axes for orthotropic elasticity. As a result, a change of the reference system is needed to obtain the stress in the global axes. In the purpose of estimating the stresses in the global axes, a relation taking into account this change in the reference system is proposed. This relation is (Cescotto, 1995) : \[\sigma_{ij} = R_{ik}R_{jl}\sigma'_{kl}\] where $R_{ij}$ is a component of the matrix of rotation, $\sigma_{ij}$ the stress in the orthotropic axes and $\sigma'_{ij}$ the stresses in the current configuration.
Generally, the matrix of rotation is characterized by the Euler’s angles. The positive direction of rotation is counter-clockwise.
The (X,Y,Z) space represents the current configuration (or global configuration) while the ($\underline{e_1}$,$\underline{e_2}$,$\underline{e_3}$) space represents the orthotropic configuration. To define the rotation, let consider that the cartesian system are equal. The rotation is decomposed in 3 steps and the definition of the angles will be:
The matrix which defines the rotation may be written : \[R = \begin{bmatrix} \cos\alpha\cos\phi & \sin\alpha\cos\phi & -\sin\phi \\ -\sin\alpha\cos\theta+\sin\theta\sin\phi\cos\alpha & \cos\alpha\cos\theta+\sin\theta\sin\phi\sin\alpha & \sin\theta\cos\phi \\ \sin\theta\sin\alpha +\cos\alpha\sin\phi\cos\theta & \sin\phi\sin\alpha\cos\theta-\sin\theta\cos\alpha & \cos\phi\cos\theta \end{bmatrix}\]
Prepro : LORTHO.F
Lagamine: ORTHO3D.F
Plane stress state | NO |
Plane strain state | NO |
Axisymmetric state | NO |
3D state | YES |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 605 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (2I5) | |
---|---|
NINTV | $\neq$ 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step |
= 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV | |
ISOL | = 0 : Use of total stresses in the constitutive law |
$\neq$ 0 : Use of effective stresses in the constitutive law. See Appendix 8 |
Line 1 (3G10.0) | |
---|---|
ALPHA | Angle of rotation of the anisotropic axis around Z axis (see figure below) |
THETA | Angle of rotation of the anisotropic axis around $e_1$ axis (see figure below) |
PHI | Angle of rotation of the anisotropic axis around $e_2$ axis (see figure below) |
Line 2 (6G10.0) | |
E1 | Elastic Young modulus E($e_1$) |
E2 | Elastic Young modulus E($e_2$) |
E3 | Elastic Young modulus E($e_3$) |
G12 | Elastic shear modulus G($e_1e_2$) |
G13 | Elastic shear modulus G($e_1e_3$) |
G23 | Elastic shear modulus G($e_2e_3$) |
Line 3 (5G10.0) | |
ANU12 | Poisson ration NU($e_1e_2$) |
ANU13 | Poisson ration NU($e_1e_3$) |
ANU23 | Poisson ration NU($e_2e_3$) |
RHO | Specific mass |
DIV | Size of sub-steps for computation of NINTV (only if NINTV = 0, Default value = 5.D-3 ) |
6 for 3D analysis
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{zz}$ |
SIG(4) | $\sigma_{xy}$ |
SIG(5) | $\sigma_{xz}$ |
SIG(6) | $\sigma_{yz}$ |
0 (see ELA3D)
Q(1) | = 0 |