User Tools

Site Tools


laws:evp-nh

EVP-NH

Description

ELASTO VISCO PLASTIC CONSTITUTIVE LAW FOR SOLID ELEMENTS AT VARIABLE TEMPERATURE (Norton-Hoff)
Implemented by: Pascon F (1998), Charles JF (1997 - 1999)
Project: continuous casting research for ARBED (RW2748)

The model

Coupled dynamic recrystallisation-thermo-mechanical analysis of elasto-visco-plastic solids undergoing large strains.
JAUMANN stress rate is used
IANA= 2, 3, 5:
See intermediate report RW2748 (1, 8, 17, 24) and intermediate report of April 1998
For details on equations used in analytical compliance matrix computation, see appendix D of April 1998
IANA= 4:
See intermediate report RW2748 (17, 24)

Files

Prepro: LNHC2.F
Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4)

Subroutines

FileSubroutineDescription
CALMAT.F CALMATComputes material data at temperature T
NHIMAT.F CALSIGY
MATMSGS2Used for analytical compliance matrix
MATMSGL2Used for analytical compliance matrix
MATMSGSUsed for analytical compliance matrix (3D case)
MATMSGLUsed for analytical compliance matrix (3D case)
EIGVECT Computes eigen vectors
CMATINV Inverse complex matrix
VGMOYEN Computes the constant velocities gradient matrix
CALPNH.F CALPNHComputes $K_0, P_1, P_2, P_3, P_4$ at temperature T
RECRYDYN.FRECRYDYN Dynamic recrystallization computation

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

1 Line (2I5, 60A1)
ILLaw number
ITYPE 270
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

1 Line (7I5)
NINTV number of sub-steps used to integrate numerically the constitutive equation in a time step.
If NINTV < 0 or = 0, then the number of sub-steps will be computed automatically
NTEMP number of temperatures at which material data (E, ANU and ALPHA) are given
IDYN = 1: if recrystallisation computation
= 0: else
ICHP2 = 2: if parameters $K_0, P_1, P_2, P_3, P_4$ are given at several temperatures
= 1: if $P_2= e^{-(\frac{T-C_4}{C_5})}.T^{C_6}$ (only if nodes temperature in Kelvin !!!)
any other value if $P_2= (\frac{C_4}{T})^2 - \frac{C_5}{T} + C_6$ (only if nodes temperature in Kelvin !!!)
IALG = 1: if enthalpic formulation for ALPHA
= 0: if classical formulation for ALPHA
MAXITER maximum number of iteration in elastic field
≤ 0: set default value = 50
NTEMP2 number of temperatures at which parameters $K_0, P_1, P_2, P_3, P_4$ are given (only if ICHP2 = 2)

Real parameters

1 Line repeated NTEMP times (4G10)
Note: parameters introduced by increasing temperature order
T Temperature
E YOUNG’s elastic modulus at temperature T
ANU POISSON’s ratio at temperature T
ALPHA Thermal expansion coefficient (α) at temperature T.
Even if IALG = 1, ALPHA must be introduced at temperature T.
In this case, $\int_0^T\alpha(T).dT$ will be automatically computed
If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10)
Note: parameters introduced by increasing temperature order
T Temperature
$K_0$ See further
$P_1$ See “Information about EVP-NH”
$P_2$
$P_3$
$P_4$
If ICHP2 ≠ 2: 2 Lines (5G10/4G10) (only if nodes temperature in Kelvin !!!)
$AK_0$
$C_1$ See further
$C_2$ See “Information about EVP-NH”
$C_3$
$C_4$
$C_5$
$C_6$
$P_3$ (be careful: 0 < $P_3$ < 1)
$P_4$
1 Line (4G10)
TQ Taylor-Quinney’s coefficient. Absolute value between 0 and 1 :
< 0: when thermal analysis within a semi-coupled analysis
> 0: for other cases (total coupled analysis or mechanical analysis within a semi-coupled analysis)
PRECVG precision in VGMOY calculation (3D state only)
≤ 0: set default value = $1.10^{-5}$
PRECELA precision in elastic computation
≤ 0: set default value = $1.10^{-4}$
EPSINC increment of deformation for the automatic computation of NINTV
≤ 0: set default value = $1.10^{-3}$
If IDYN = 1: 4 Lines (3I5/4G10.0/4G10.0/2G10.0)
ICOUPL = 1: the recrystallisation is coupled
= 0: the recrystallisation is uncoupled
ITYPEPS = 0: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1. Q_4^{Q_2} . [LN(Zener)]^{Q_3}$
= 1: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1.ATAN[Q_3.[LN(Zener)-Q_2]]+ Q_4$
= 2: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1.[LN(Zener)]^{Q_2}+ Q_3.LN(Zener) + Q_4$
NSSMAX used if ICOUPL = 1: Maximum number of sub-structures
The precision on the recryst. fraction is 1/NSSMAX
$Q_1$ parameters for the beginning of the recrystallisation: $\varepsilon_c$
$Q_2$ parameters for the beginning of the recrystallisation: $\varepsilon_c$
$Q_3$ parameters for the beginning of the recrystallisation: $\varepsilon_c$
$Q_4$ parameters for the beginning of the recrystallisation: $\varepsilon_c$
$Q_1$ parameters for the end of the recrystallisation: $\varepsilon_s$
$Q_2$ parameters for the end of the recrystallisation: $\varepsilon_s$
$Q_3$ parameters for the end of the recrystallisation: $\varepsilon_s$
$Q_4$ parameters for the end of the recrystallisation: $\varepsilon_s$
ACTIV Activation energy for Zener computation : $Z=\dot{\varepsilon}.EXP(\frac{ACTIV}{R.T})$
with T the temperature and R the Boltzman gas constant
EXPO Exponent for the AVRAMI law : $X= 1- EXP[-3.(\frac{\bar{\varepsilon}-\varepsilon_c}{\varepsilon_s-\varepsilon_c})^{expo}]$

NOTE: ISTRA(3) parameter of the execution file:
Units:
= 0: analytical compliance matrix used (default value)
= 1: perturbation method
Tens:
= 0: mean velocities gradient (default value)
= 1: initial velocities gradient
Hundreds:
= 0: yield limit given by intersection between N-H curve and Young’s straight line
= 1: yield limit given by K0 (given parameter – see below)


Information about EVP-NH:
For the 1D case, we have:
$\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$
The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2)
Otherwise, if ICHP2 ≠ 2: (see the law in section: “integer parameters”)
$P_1= (\frac{T}{C_1})^{C_2} + C_3$
$P_2= f(C_4, C_5, C_6, T)$
$P_3, P_4, K_0= constants$

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

27

List of state variables

Q(1)thickness
Q(2)equivalent stress (effective if icoupl=1)
Q(3)equivalent strain
Q(4)equivalent strain rate
Q(5)instantaneous thermal flow (effective if icoupl=1)
Q(6)plastic dissipation (effective if icoupl=1)
Q(7)ΔT
Q(8)RHOC capacity
Q(9)LN (ZENER)
Q(10)recrystallised fraction since the beginning of the simulation
Q(11)recrystallised fraction on this step
Q(12)elastic part on this step – in percent
(>0 : loading ; <0 : unloading) (effective if icoupl=1)
Q(13)number of sub-structures
Q(14)volumic fraction of the unrecrystallised sub-structure
Q(15)effective equivalent strain
Q(16)equivalent strain standard deviation
Q(17)= 0 if always elastic state since the beginning
= 1 if any previous step has been performed in visco-plastic domain
Q(18)recrystallised fraction during previous step
Q(19)
Q(20)
Q(21)
Q(22)
Q(23)
Q(24)
Q(25)triaxiality (BLZ2T)
Q(26)shape parameter of the element (BLZ2T)
Q(27)Remeshing parameter (BLZ2T)
laws/evp-nh.txt · Last modified: 2020/08/25 15:46 (external edit)