User Tools

Site Tools


laws:evp-nh

This is an old revision of the document!


EVP-NH

Description

ELASTO VISCO PLASTIC CONSTITUTIVE LAW FOR SOLID ELEMENTS AT VARIABLE TEMPERATURE (Norton-Hoff)
Implemented by: Pascon F (1998), Charles JF (1997 - 1999)
Project: continuous casting research for ARBED (RW2748)

The model

Coupled dynamic recrystallisation-thermo-mechanical analysis of elasto-visco-plastic solids undergoing large strains.
JAUMANN stress rate is used
IANA= 2, 3, 5:
See intermediate report RW2748 (1, 8, 17, 24) and intermediate report of April 1998
For details on equations used in analytical compliance matrix computation, see appendix D of April 1998
IANA= 4:
See intermediate report RW2748 (17, 24)

Files

Prepro: LNHC2.F
Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4)

Subroutines

CaseFileSubroutineDescription
2D CALMAT.F CALMATComputes material data at temperature T
CALSIGY.F
CALPNH.F CALPNHComputes $K_0, P_1, P_2, P_3, P_4$ at temperature T
MATMSGS2.F
MATMSGL2.F
RECRYDYN.FRECRYDYN Dynamic recrystallization computation
3D CALMAT.FCALMAT Computes material data at temperature T
CALSIGY.F
CALPNH.F CALPNHComputes $K_0, P_1, P_2, P_3, P_4$ at temperature T
MATMSGS.F
MATMSGL.F
RECRYDYN.FRECRYDYN Dynamic recrystallization computation
VGMOYEN.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

1 Line (2I5, 60A1)
ILLaw number
ITYPE 270
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

1 Line (7I5)
NINTV number of sub-steps used to integrate numerically the constitutive equation in a time step.
If NINTV < 0 or = 0, then the number of sub-steps will be computed automatically
NTEMP number of temperatures at which material data (E, ANU and ALPHA) are given
IDYN = 1: if recrystallisation computation
= 0: else
ICHP2 = 2: if parameters $K_0, P_1, P_2, P_3, P_4$ are given at several temperatures
= 1: if $P_2= e^{-(\frac{T-C_4}{C_5})}.T^{C_6}$ (only if nodes temperature in Kelvin !!!)
any other value if $P_2= (\frac{C_4}{T})^2 - \frac{C_5}{T} + C_6$ (only if nodes temperature in Kelvin !!!)
IALG = 1: if enthalpic formulation for ALPHA
= 0: if classical formulation for ALPHA
MAXITER maximum number of iteration in elastic field
≤ 0: set default value = 50
NTEMP2 number of temperatures at which parameters $K_0, P_1, P_2, P_3, P_4$ are given (only if ICHP2 = 2)

Real parameters

1 Line repeated NTEMP times (4G10)
Note: parameters introduced by increasing temperature order
T Temperature
E YOUNG’s elastic modulus at temperature T
ANU POISSON’s ratio at temperature T
ALPHA Thermal expansion coefficient (α) at temperature T.
Even if IALG = 1, ALPHA must be introduced at temperature T.
In this case, $\int_0^T\alpha(T).dT$ will be automatically computed
If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10)
Note: parameters introduced by increasing temperature order
T Temperature
$K_0$ See further
$P_1$ See “Information about EVP-NH”
$P_2$
$P_3$
$P_4$
If ICHP2 ≠ 2: 2 Lines (5G10/4G10) (only if nodes temperature in Kelvin !!!)
$AK_0$
$C_1$ See further
$C_2$ See “Information about EVP-NH”
$C_3$
$C_4$
$C_5$
$C_6$
$P_3$ (be careful: 0 < $P_3$ < 1)
$P_4$
1 Line (4G10)
TQ Taylor-Quinney’s coefficient. Absolute value between 0 and 1 :
< 0: when thermal analysis within a semi-coupled analysis
> 0: for other cases (total coupled analysis or mechanical analysis within a semi-coupled analysis)
PRECVG precision in VGMOY calculation (3D state only)
≤ 0: set default value = $1.10^{-5}$
PRECELA precision in elastic computation
≤ 0: set default value = $1.10^{-4}$
EPSINC increment of deformation for the automatic computation of NINTV
≤ 0: set default value = $1.10^{-3}$
If IDYN = 1: 4 Lines (3I5/4G10.0/4G10.0/2G10.0)
ICOUPL = 1: the recrystallisation is coupled
= 0: the recrystallisation is uncoupled
ITYPEPS = 0: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1. Q_4^{Q_2} . [LN(Zener)]^{Q_3}$
= 1: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1.ATAN[Q_3.[LN(Zener)-Q_2]]+ Q_4$
= 2: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1.[LN(Zener)]^{Q_2}+ Q_3.LN(Zener) + Q_4$
NSSMAX used if ICOUPL = 1: Maximum number of sub-structures
The precision on the recryst. fraction is 1/NSSMAX
$Q_1$ parameters for the beginning of the recrystallisation: $\varepsilon_c$
$Q_2$ parameters for the beginning of the recrystallisation: $\varepsilon_c$
$Q_3$ parameters for the beginning of the recrystallisation: $\varepsilon_c$
$Q_4$ parameters for the beginning of the recrystallisation: $\varepsilon_c$
$Q_1$ parameters for the end of the recrystallisation: $\varepsilon_s$
$Q_2$ parameters for the end of the recrystallisation: $\varepsilon_s$
$Q_3$ parameters for the end of the recrystallisation: $\varepsilon_s$
$Q_4$ parameters for the end of the recrystallisation: $\varepsilon_s$
ACTIV Activation energy for Zener computation : $Z=\dot{\varepsilon}.EXP(\frac{ACTIV}{R.T})$
with T the temperature and R the Boltzman gas constant
EXPO Exponent for the AVRAMI law : $X= 1- EXP[-3.(\frac{\bar{\varepsilon}-\varepsilon_c}{\varepsilon_s-\varepsilon_c})^{expo}]$

NOTE: ISTRA(3) parameter of the execution file:
Units:
= 0: analytical compliance matrix used (default value)
= 1: perturbation method
Tens:
= 0: mean velocities gradient (default value)
= 1: initial velocities gradient
Hundreds:
= 0: yield limit given by intersection between N-H curve and Young’s straight line
= 1: yield limit given by K0 (given parameter – see below)


Information about EVP-NH:
For the 1D case, we have:
$\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$
The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2)
Otherwise, if ICHP2 ≠ 2: (see the law in section: “integer parameters”)
$P_1= (\frac{T}{C_1})^{C_2} + C_3$
$P_2= f(C_4, C_5, C_6, T)$
$P_3, P_4, K_0= constants$

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

27

List of state variables

Q(1)thickness
Q(2)equivalent stress (effective if icoupl=1)
Q(3)equivalent strain
Q(4)equivalent strain rate
Q(5)instantaneous thermal flow (effective if icoupl=1)
Q(6)plastic dissipation (effective if icoupl=1)
Q(7)ΔT
Q(8)RHOC capacity
Q(9)LN (ZENER)
Q(10)recrystallised fraction since the beginning of the simulation
Q(11)recrystallised fraction on this step
Q(12)elastic part on this step – in percent
(>0 : loading ; <0 : unloading) (effective if icoupl=1)
Q(13)number of sub-structures
Q(14)volumic fraction of the unrecrystallised sub-structure
Q(15)effective equivalent strain
Q(16)equivalent strain standard deviation
Q(17)= 0 if always elastic state since the beginning
= 1 if any previous step has been performed in visco-plastic domain
Q(18)recrystallised fraction during previous step
Q(19)
Q(20)
Q(21)
Q(22)
Q(23)
Q(24)
Q(25)triaxiality (BLZ2T)
Q(26)shape parameter of the element (BLZ2T)
Q(27)Remeshing parameter (BLZ2T)
laws/evp-nh.1553016459.txt.gz · Last modified: 2020/08/25 15:35 (external edit)