User Tools

Site Tools


laws:chab

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:chab [2022/04/04 09:00]
helene [The model]
laws:chab [2022/09/28 16:23] (current)
helene
Line 122: Line 122:
 |NINTV| number of time sub-steps in the material law| |NINTV| number of time sub-steps in the material law|
 |IDAM|UNITS:​ \\ = 0 no mechanical damage computation\\ = 1 isotropic uncoupled damage computation \\ = 2 isotropic coupled damage computation [UNSTABLE] \\ = 3 isotropic semi-coupled damage computation (use of $D_{n-1}$ to compute the effective stress at time step $t_n$, $D$ updated at the end of the time step)| |IDAM|UNITS:​ \\ = 0 no mechanical damage computation\\ = 1 isotropic uncoupled damage computation \\ = 2 isotropic coupled damage computation [UNSTABLE] \\ = 3 isotropic semi-coupled damage computation (use of $D_{n-1}$ to compute the effective stress at time step $t_n$, $D$ updated at the end of the time step)|
-|:::| TENS: \\ = 0 no corrosion damage \\ = 1 linear corrosion damage: $\dot{D}_u=\frac{k_u}{L_E}$\\ = 2 parabolic corrosion damage: $\dot{D}_u=\frac{k_u}{D_u L_E^2}$|+|:::| TENS: \\ = 0 no corrosion damage \\ = 1 linear corrosion damage: $\dot{D}_u=\frac{k_u}{L_E}$\\ = 2 parabolic corrosion damage: $\dot{D}_u=\frac{k_u}{D_u L_E^2}$ \\ = 3 power law for corrosion damage: $D_u=\frac{k_u}{L_E} t^{m_u}$|
 |IARRH| = 1 expression of static recovery parameters using Arrhenius law| |IARRH| = 1 expression of static recovery parameters using Arrhenius law|
 |:::| = 2 expression of all parameters as exponential function of temperature| |:::| = 2 expression of all parameters as exponential function of temperature|
 |:::| = 0 parameters are interpolated linearly between to defined temperatures| |:::| = 0 parameters are interpolated linearly between to defined temperatures|
-|ILCF| = 1 computation of stress amplitude for cyclic loading (for Optim)|+|ILCF| = 1 computation of stress amplitude, mean stress, relaxation stress ​for cyclic loading (for Optim) ​- only available for uniaxial loading in x direction.|
  
 ==== Real parameters ==== ==== Real parameters ====
Line 132: Line 132:
 ^Line 1 (4G10)^^ ^Line 1 (4G10)^^
 |ETA| strain memory rate| |ETA| strain memory rate|
-|PRECNR| precision for convergence of the Newton-Raphson algorithm (default=10<​sub>-4</sub>)|+|PRECNR| precision for convergence of the Newton-Raphson algorithm (default=10<​sup>-4</sup>)|
 |PERIOD| period of cyclic loading (only if ILCF=1)| |PERIOD| period of cyclic loading (only if ILCF=1)|
-|tH|Hold time in the cyclic loading (only if ILCF=1)|+|$t_H$|Hold time in the cyclic loading (only if ILCF=1)|
 ^If IANISOTH=1 - Line 2 (3G10)^^ ^If IANISOTH=1 - Line 2 (3G10)^^
-|BDG|Rate parameter controlling the evolution of D<​sub>​γ</​sub>​| +|$b_{D\gamma}$|Rate parameter controlling the evolution of D<​sub>​γ</​sub>​| 
-|be| Rate of evolution of the weighted average factor fe| +|$b_E$| Rate of evolution of the weighted average factor fe| 
-|fes| Saturation value of the weighted average factor fe|+|$f_E^s$| Saturation value of the weighted average factor fe|
 ^If IDAM≠0 - Line 3 (7G10)^^ ^If IDAM≠0 - Line 3 (7G10)^^
-|h| micro-defects closure parameter (=0.2 in general for metals ; 1 if micro-defects closure not taken into account)| +|$h$| micro-defects closure parameter (=0.2 in general for metals ; 1 if micro-defects closure not taken into account)| 
-|Dc| Critical damage value (<1)| +|$D_{crit}$| Critical damage value (<1)| 
-|τ| Specific time for the appearance of creep|+|$\tau$| Specific time for the appearance of creep|
 |$k_1$|Global safety coefficient on fatigue damage| |$k_1$|Global safety coefficient on fatigue damage|
 |$k_2$|Safety coefficient applied to stress level on fatigue damage| |$k_2$|Safety coefficient applied to stress level on fatigue damage|
Line 148: Line 148:
 |$k_4$|Safety coefficient applied to stress level on creep damage| |$k_4$|Safety coefficient applied to stress level on creep damage|
 ^If IARRH=1 - Line 3+i (i=1:nAF) (2G10)*i^^ ^If IARRH=1 - Line 3+i (i=1:nAF) (2G10)*i^^
-|Ai| coefficient for expression of bi using Arrhenius equation| +|$A_i$| coefficient for expression of $b_i$ using Arrhenius equation: $b_i=A_i \exp(-B_i/​T)$
-|Bi| coefficient for expression of bi using Arrhenius equation|+|$B_i$| coefficient for expression of $b_i$ using Arrhenius equation: $b_i=A_i \exp(-B_i/​T)$|
  
 === Temperature-dependent parameters - Case where iarrh=0 or iarrh=1 === === Temperature-dependent parameters - Case where iarrh=0 or iarrh=1 ===
Line 156: Line 156:
  
 ^Line 1 (4G10)^^ ^Line 1 (4G10)^^
-|T|Temperature| +|$T$|Temperature| 
-|E| Young'​s modulus at temperature T| +|$E$| Young'​s modulus at temperature T| 
-|NU| Poisson'​s ratio at temperature T| +|$\nu$| Poisson'​s ratio at temperature T| 
-|α|Thermal expansion coefficient at temperature T\\ NB: in the preprocessor,​ the thermal expansion coefficient is transformed in its enthalpic formulation|+|$\alpha$|Thermal expansion coefficient at temperature T\\ NB: in the preprocessor,​ the thermal expansion coefficient is transformed in its enthalpic formulation|
 ^Line 2 (5G10)^^ ^Line 2 (5G10)^^
-|σ<​sub>​Y</​sub>​|Yield stress at temperature T| +|$\sigma_y$|Yield stress at temperature T| 
-|b| Rate of isotropic hardening \\ NB: to avoid convergence issues, b should be constant with temperature| +|$b$| Rate of isotropic hardening \\ NB: to avoid convergence issues, b should be constant with temperature| 
-|Q| Total isotropic saturation size of the yield surface\\ NB: to avoid convergence issues, Q should be constant with temperature| +|$Q$| Total isotropic saturation size of the yield surface\\ NB: to avoid convergence issues, Q should be constant with temperature| 
-|K| Drag stress in Norton-Hoff law| +|$K$| Drag stress in Norton-Hoff law| 
-|n| Viscosity exponent for Norton-Hoff law|+|$n$| Viscosity exponent for Norton-Hoff law|
 ^Line 2+i (4G10) repeated NAF times (i=1:NAF)^^ ^Line 2+i (4G10) repeated NAF times (i=1:NAF)^^
-|C<​sub>​i</​sub>​|Prager'​s linear coefficient in the i<​sup>​th</​sup>​ A-F equation| +|$C_i$|Prager'​s linear coefficient in the i<​sup>​th</​sup>​ A-F equation| 
-|γ<​sub>​i</​sub>​| Dynamic recovery parameter in the i<​sup>​th</​sup>​ A-F equation| +|$\gamma_i$| Dynamic recovery parameter in the i<​sup>​th</​sup>​ A-F equation| 
-|b<​sub>​i</​sub>​| Static recovery parameter in the i<​sup>​th</​sup>​ equation| +|$b_i$| Static recovery parameter in the i<​sup>​th</​sup>​ equation| 
-|r<​sub>​i</​sub>​| Static recovery exponent in the i<​sup>​th</​sup>​ equation|+|$r_i$| Static recovery exponent in the i<​sup>​th</​sup>​ equation|
 ^Line 2+NAF+i (4G10) repeated NAFcyc times (i=1:​NAFcyc)^^ ^Line 2+NAF+i (4G10) repeated NAFcyc times (i=1:​NAFcyc)^^
-|D<​sub>​γi</​sub>​|Parameter controlling the evolution of γ<​sub>​i</​sub>​ with increment of plastic strain norm| +|$D_{\gamma,i}$|Parameter controlling the evolution of γ<​sub>​i</​sub>​ with increment of plastic strain norm| 
-|A<​sub>​γi</​sub>​|Parameter controlling the saturation value of γ<​sub>​i</​sub>​| +|$a_{\gamma,i}$|Parameter controlling the saturation value of γ<​sub>​i</​sub>​| 
-|B<​sub>​γi</​sub>​|Parameter controlling the saturation value of γ<​sub>​i</​sub>​| +|$b_{\gamma,i}$|Parameter controlling the saturation value of γ<​sub>​i</​sub>​| 
-|C<​sub>​γi</​sub>​|Parameter controlling the saturation value of γ<​sub>​i</​sub>​|+|$c_{\gamma,i}$|Parameter controlling the saturation value of γ<​sub>​i</​sub>​|
 ^Line 2+NAF+NAFcyc+i (4G10) repeated NAFY times (i=1:​NAFY)^^ ^Line 2+NAF+NAFcyc+i (4G10) repeated NAFY times (i=1:​NAFY)^^
-|α<​sub>​bi</​sub>​| Rate of evolution of the mean stress tensor Y<​sub>​i</​sub>​| +|$\alpha_{b,​i}$| Rate of evolution of the mean stress tensor Y<​sub>​i</​sub>​| 
-|Y<​sub>​st,i</​sub>​| Saturation value of the mean stress tensor Y<​sub>​i</​sub>​|+|$Y_{st,i}$| Saturation value of the mean stress tensor Y<​sub>​i</​sub>​|
 ^If 1≤IDAM<​10 - Line 2+NAF+NAFcyc+NAFY (8G10)^^ ^If 1≤IDAM<​10 - Line 2+NAF+NAFcyc+NAFY (8G10)^^
-|A|Parameter of correction in the energy stored by hardening| +|$A$|Parameter of correction in the energy stored by hardening| 
-|m|Exponent parameter of correction in the energy stored by hardening| +|$m$|Exponent parameter of correction in the energy stored by hardening| 
-|wD|Stored energy threshold for damage initiation| +|$w_D$|Stored energy threshold for damage initiation| 
-|Sf|Fatigue damage parameter| +|$S_f$|Fatigue damage parameter| 
-|expsf|Fatigue damage exponent parameter| +|$s_f$|Fatigue damage exponent parameter| 
-|Sc|Creep damage parameter| +|$S_c$|Creep damage parameter| 
-|expsc|Creep damage exponent| +|$s_c$|Creep damage exponent| 
-|k|Kachanov creep damage exponent| +|$k_c$|Kachanov creep damage exponent| 
-^If IDAM≥10 - Line 3+NAF+NAFcyc+NAFY (1G10)^^ +^If IDAM≥10 - Line 3+NAF+NAFcyc+NAFY (1G10 to 3G10)^^ 
-|D<​sub>​u</​sub>​|Uniform corrosion parameter|+|$k_u$|Uniform corrosion ​parameter| 
 +|$L_E$| [Optional] Characteristic length of the element - if blank or 0, $L_E$ is computed as the cubic root of the volume element| 
 +|$m_u$| [ONLY IF DIDAM=3] power law parameter|
  
 === Temperature-dependent parameters - Case where iarrh=2 === === Temperature-dependent parameters - Case where iarrh=2 ===
Line 195: Line 197:
 \[P(T)=A_P\left(1-B_P*\exp\left(\frac{T}{C_P}\right)\right)\] \[P(T)=A_P\left(1-B_P*\exp\left(\frac{T}{C_P}\right)\right)\]
 ^Line 1 (6G10)^^ ^Line 1 (6G10)^^
-|A<​sub>​E</​sub>​|Young modulus parameter| +|$A_E$|Young modulus parameter| 
-|B<​sub>​E</​sub>​|Young modulus parameter| +|$B_E$|Young modulus parameter| 
-|C<​sub>​E</​sub>​|Young modulus parameter| +|$C_E$|Young modulus parameter| 
-|A<​sub>​nu</​sub>​|Poisson ratio parameter| +|$A_\nu$|Poisson ratio parameter| 
-|B<​sub>​nu</​sub>​|Poisson ratio parameter| +|$B_\nu$|Poisson ratio parameter| 
-|C<​sub>​nu</​sub>​|Poisson ratio parameter|+|$C_\nu$|Poisson ratio parameter|
 ^Line 2 (6G10)^^ ^Line 2 (6G10)^^
-|A<​sub>​α</​sub>​|Dilatation ​coefficient parameter| +|$A_\alpha$|Thermal expansion ​coefficient parameter| 
-|B<​sub>​α</​sub>​|Dilatation coefficient parameter| +|$B_\alpha$|Dilatation coefficient parameter| 
-|C<​sub>​α</​sub>​|Dilatation coefficient parameter| +|$C_\alpha$|Dilatation coefficient parameter. \\ If $C_\alpha=0$,​ $\int_0^T\alpha(T).dT$ is computed as: $\int_0^T\alpha(T).dT=A_{\alpha}T^2+B_{\alpha}T$
-|A<​sub>​σY</​sub>​|Yield stress parameter| +|$A_{\sigma_y}$|Yield stress parameter| 
-|B<​sub>​σY</​sub>​|Yield stress parameter| +|$B_{\sigma_y}$|Yield stress parameter| 
-|C<​sub>​σY</​sub>​|Yield stress parameter|+|$C_{\sigma_y}$|Yield stress parameter|
 ^Line 3 (6G10)^^ ^Line 3 (6G10)^^
-|A<​sub>​K</​sub>​|Drag stress parameter| +|$A_K$|Drag stress parameter| 
-|B<​sub>​K</​sub>​|Drag stress parameter| +|$B_K$|Drag stress parameter| 
-|C<​sub>​K</​sub>​|Drag stress parameter| +|$C_K$|Drag stress parameter| 
-|A<​sub>​n</​sub>​|Norton coefficient parameter| +|$A_n$|Norton coefficient parameter| 
-|B<​sub>​n</​sub>​|Norton coefficient parameter| +|$B_n$|Norton coefficient parameter| 
-|C<​sub>​n</​sub>​|Norton coefficient parameter|+|$C_n$|Norton coefficient parameter|
 ^Line 4 (2G10)^^ ^Line 4 (2G10)^^
-|b| Rate of isotropic hardening| +|$b$| Rate of isotropic hardening| 
-|Q| Total isotropic saturation size of the yield surface|+|$Q$| Total isotropic saturation size of the yield surface|
 ^Line 5 (6G10)^^ ^Line 5 (6G10)^^
 |B<​sub>​Ci</​sub>​|Parameter for Ci ∀i| |B<​sub>​Ci</​sub>​|Parameter for Ci ∀i|
Line 267: Line 269:
 |**Line 7+NAF+2NAFcyc+nAFY (4G10)**|| |**Line 7+NAF+2NAFcyc+nAFY (4G10)**||
 |The creep damage parameter $S_c$ is calculated using a simpler exponential law: \[A_{S_c}\exp\left(\frac{T}{B_{S_c}}\right)\]|| |The creep damage parameter $S_c$ is calculated using a simpler exponential law: \[A_{S_c}\exp\left(\frac{T}{B_{S_c}}\right)\]||
-|A<​sub>​Sc</​sub>​| creep damage parameter| +|$A_{S_c}$| creep damage parameter| 
-|B<​sub>​Sc</​sub>​| creep damage parameter| +|$B_{S_c}$| creep damage parameter| 
-|exp<​sub>​Sc</​sub>​|exponent parameter for creep damage| +|$s_c$|exponent parameter for creep damage| 
-|k|Kachanov creep damage exponent|+|$k$|Kachanov creep damage exponent|
 ^If IDAM≥10 ^^ ^If IDAM≥10 ^^
-|**Line 1+NAF+2NAFcyc+nAFY+H(IDAM)*7 (3G10)**|| +|**Line 1+NAF+2NAFcyc+nAFY+H(IDAM)*7 (3G10 to 7G10)**|| 
-|A<​sub>​Du</​sub>​| corrosion damage parameter| +|$A_{k_u}$| corrosion damage parameter| 
-|B<​sub>​Du</​sub>​| corrosion damage parameter| +|$B_{k_u}$| corrosion damage parameter| 
-|C<​sub>​Du</​sub>​| corrosion damage parameter|+|$C_{k_u}$| corrosion damage ​parameter| 
 +|$L_E$| [Optional] Characteristic length of the element - if blank or 0, $L_E$ is computed as the cubic root of the volume element| 
 +|$A_{m_u}$| [ONLY IF DIDAM=3] power law parameter| 
 +|$B_{m_u}$| [ONLY IF DIDAM=3] power law parameter| 
 +|$C_{m_u}$| [ONLY IF DIDAM=3] power law parameter|
 ===== Stresses ===== ===== Stresses =====
 ==== Number of stresses ==== ==== Number of stresses ====
Line 291: Line 297:
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-24+6*nAF+6*nAFY+H(UIDAM)*(2+2*ddim+6)+DIDAM+8*ILCF ​\\ +$24+6n_{AF}+6n_{AF_Y}+(8+2ddim)\mathscr{H}(u_{i_{dam}})+2\mathscr{H}(d_{i_{dam}})+8i_{LCF}$ 
-Where: ​UIDAM=IDAM ​mod 10 and DIDAM=IDAM-UIDAM \\ +\\ 
-H() is the Heaviside step function.+Where: ​$u_{i_{dam}}\equiv i_{dam} \mod 10$ \\ and $d_{i_{dam}}=i_{dam}-u_{i_{dam}}$. ​\\ 
 +$\mathscr{H}(x)is the Heaviside step function: $\mathscr{H}(x)=1$ if and only if $x>0$, otherwise, $\mathscr{H}(x)=0$.
 ==== List of state variables ==== ==== List of state variables ====
 |Q(1)|plastic strain norm $p$| |Q(1)|plastic strain norm $p$|
Line 306: Line 313:
 |Q(18+6nAF+6i:​23+6nAF+6i)|Modification tensor $\underline{Y}_i$ (6 components) for i=1:nAFY| |Q(18+6nAF+6i:​23+6nAF+6i)|Modification tensor $\underline{Y}_i$ (6 components) for i=1:nAFY|
 |Q(24+6nAF+6nAFY)|Maximum temperature in the loading history| |Q(24+6nAF+6nAFY)|Maximum temperature in the loading history|
-===Only if 10>IDAM>0=== +===Only if $u_{i_{dam}}>0$=== 
-In the following table, ddim=1 for isotropic damage (scalar damage variable D) and ddim=6 for anisotropic damage (not implemented).+In the following table, ddim=1 for isotropic damage (scalar damage variable ​$D$) and ddim=6 for anisotropic damage (not implemented).
 |Q(25+6NAF+6NAFY)| Stored energy $w_s$| |Q(25+6NAF+6NAFY)| Stored energy $w_s$|
 |Q(26+6NAF+6NAFY)| Visco-plastic multiplicator with damage $r$| |Q(26+6NAF+6NAFY)| Visco-plastic multiplicator with damage $r$|
-| Q(27+6NAF+6NAFY) \\ Q(26+ddim+6nAF+6nAFY)|Fatigue damage variable $D_f$ (isotropic) or tensor $\underline{D}_f$ (anisotropic)| +| Q(27+6NAF+6NAFY) \\ Q(26+ddim+6nAF+6nAFY)|Fatigue damage variable $D_f$ (isotropic) or tensor $\underline{D}_f$ (anisotropic ​- not implemented)| 
-| Q(27+ddim+6NAF+6NAFY) \\ Q(26+2ddim+6nAF+6nAFY)|Creep damage variable $D_c$ (isotropic) or tensor $\underline{D}_c$ (anisotropic)|+| Q(27+ddim+6NAF+6NAFY) \\ Q(26+2ddim+6nAF+6nAFY)|Creep damage variable $D_c$ (isotropic) or tensor $\underline{D}_c$ (anisotropic ​- not implemented)|
 | Q(27+2ddim+6NAF+6NAFY) \\  … \\ Q(32+2ddim+6nAF+6nAFY)|Delayed stress tensor $\sigma^d$| | Q(27+2ddim+6NAF+6NAFY) \\  … \\ Q(32+2ddim+6nAF+6nAFY)|Delayed stress tensor $\sigma^d$|
-===Only if IDAM≥10=== +===Only if $i_{dam}$≥10=== 
-NQDU=25+6nAF+6nAFY+(8+2ddim)<IDAM>+$N_{Q,D_u}=25+6n_{AF}+6n_{AF_Y}+(8+2ddim)*\mathscr{H}(u_{i_{dam}})$ 
 +\\ with $\mathscr{H}(u_{i_{dam}})=1$ if and only if $u_{i_{dam}}>0$
 | Q(NQDU)| $D_u$ - Uniform corrosion damage| | Q(NQDU)| $D_u$ - Uniform corrosion damage|
 | Q(NQDU+1)| $L_E=\sqrt[3]{V_E}$ - Characteristic length of the element where $V_E$ is the volume of the element (:!: only works with BWD3T elements)| | Q(NQDU+1)| $L_E=\sqrt[3]{V_E}$ - Characteristic length of the element where $V_E$ is the volume of the element (:!: only works with BWD3T elements)|
-=== Only if ILCF>0 === +=== Only if $i_{LCF}>0=== 
-NQLCF=25+6nAF+6nAFY+(8+2ddim)<​IDAM>​+DIDAM ​(where ​DIDAM=1 if IDAM≥10 and 0 otherwise)+$N_{Q,LCF}=25+6n_{AF}+6n_{AF_Y}+(8+2ddim)*\mathscr{H}(u_{i_{dam}})+2d_{i_{dam}}$ \\ where $d_{i_{dam}}=1if $i_{dam}$≥10 and 0 otherwise)
 | Q(NQLCF)| t (time)| | Q(NQLCF)| t (time)|
 |Q(1+NQLCF) |N (cycle)| |Q(1+NQLCF) |N (cycle)|
laws/chab.1649055656.txt.gz · Last modified: 2022/04/04 09:00 by helene