User Tools

Site Tools


laws:cazacutn

CAZACUTN

Description

3D Coupled damage law for porous hexagonal closed packed (HCP) materials exhibiting orthotropy and strength differential effect.

The model

The mathematical model was developed by (J. Stewart & O. Cazacu, 2011),following a Gurson-type approach where the material yield stress is determined by the CPB06 yield criterion. The damage is modeled in the form of porosity ratio, and its evolution is ruled by phenomenological models of growth, nucleation and coalescence of voids. This constitutive law also integrates an automatic definition of coalescence onset, throughout the implementation of the Thomason-Zhang coalescence extension.

The inverse of the orthotropic elastic matrix is defined:

\[\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{23} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{1}} & \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{13}}{E_{1}} & 0 & 0 & 0\\ \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{12}}{E_{2}} & \frac{1}{E_{2}} & 0 & 0 & 0\\ \frac{-\nu_{13}}{E_{1}} & \frac{-\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{23}} \end{pmatrix} \begin{pmatrix} \sigma_{11}\\ \sigma_{22}\\ \sigma_{33}\\ \sigma_{12}\\ \sigma_{13}\\ \sigma_{23}\\ \end{pmatrix}\]

The yield locus of this damage law is defined as:

\[\Phi= \bar{\Sigma}_{CPB06} - \sigma_{y}\cdot{STF} = 0 \]

Where:

  • $\bar{\Sigma}_{CPB06}$ is the CPB06 yield stress:

\[\bar{\Sigma}_{CPB06}=\tilde{m}\Big[ \overset{3}{\underset{i=1}{\Sigma}} \big(|\Sigma_{i}| - k\Sigma_{i}\big)^a \Big] ^{\frac{1}{a}}\]

  • $\sigma_{y}$ is the current yield stress of the material:

\[\sigma_{y} = \sigma_{0} + S_{R}\big[1-exp\big(-C_{R}\bar{\epsilon}^{p}\big)\big]\]

  • STF is the stress transformation function, containing all the damage-related variables:

\[STF= 1 - 2fq_{1}cosh\Big[\frac{3q_{2}\big(\sigma_{m} - X_{m}\big)}{h\sigma_{y}}\Big] - q_{3}f^{2}\]

The corrected stress ($\hat{\sigma}$) and backstress ($\hat{X}$) are respectively calculated as:

\[\hat{\sigma} = L_{ijmn}T_{mnkl}\sigma_{kl}\] \[\hat{X}= L_{ijmn}T_{mnkl}X_{kl}\]

The backstress tensor is calculated using the Armstrong-Frederick model:

\[dX = S_{x}[C_{x}d{\epsilon^p}-Xd\bar{\epsilon}^p]\]

Files

Prepro: LCAZACUTN.F
Lagamine: CAZACUTN.F
Coalescence onset criterion: COALCITERIA.F

Subroutines

Files Contained subroutines Description
LCAZACUTN.F LCAZACUTN Main Prepro LCAZACUTN subroutine
CAZACUTN.F CAZACUTN Main Lagamine CAZACUTN subroutine
CAZACUTNFUN Calculation of CAZACUTN yield locus
COALCRITERIA.F THOMASON_ZHANG Calculation of ThZ coalescence criterion
LSP_2006 Calculation of LSP06 coalescence criterion

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state NO
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
IL Law number
ITYPE337
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (3I5)
MAXIT Maximal number of iterations during stress integration
IDAMAGEActive damage mechanism(s) identifier, param(35, ilaw)
IDELEM DELEM section identifier,

Real parameters

Line 1 (6G10.0)
$E_{1}$ YOUNG's orthotropic elastic moduli
$E_{2}$
$E_{3}$
$\nu_{12}$Orthotropic POISSON's ratios
$\nu_{13}$
$\nu_{23}$
Line 2 (1G10.0)
$a$ degree of homogeneity, param(16, ilaw)
Line 3 (1G10.0)
k Asymmetry parameter, param(17, ilaw)
Line 4 (3G10.0) Components of orthotropic constants tensor
$C_{11}$ param(18,ilaw)
$C_{12}$ param(19,ilaw)
$C_{13}$ param(20,ilaw)
Line 5 (3G10.0) Components of orthotropic constants tensor
$C_{22}$ param(21,ilaw)
$C_{23}$ param(22,ilaw)
$C_{33}$ param(23,ilaw)
Line 6 (3G10.0) Components of orthotropic constants tensor
$C_{44}$ param(24,ilaw)
$C_{55}$ param(25,ilaw)
$C_{66}$ param(26,ilaw)
Line 7 (3G10.0) Isotropic hardening law parameters
$\sigma_{0}$ Initial Yield stress [MPa], param(27, ilaw)
$S_{R}$ Saturation rate [MPa], param(28, ilaw)
$C_{R}$ Saturation value [-], param(29, ilaw)
Line 8 (2G10.0) Kinematic hardening parameters
$S_{X}$ Saturation rate [-], param(30, ilaw)
$C_{X}$ Saturation value [MPa], param(31, ilaw)
Line 9 (4G10.0) Standard initial damage control parameters
$f_{0}$ Initial porosity ratio, VARIN(5,ilaw)
$q_{1}$ Tvergaard&Needleman parameter, param(32,ilaw)
$q_{2}$ Tvergaard&Needleman parameter, param(33,ilaw)
$q_{3}$ Tvergaard&Needleman parameter, param(34,ilaw)
SELECT CASE (IDAMAGE)
CASE (0): No damage increment is calculated
CASE (1): Growth is the only active damage mechanism
CASE (2): Growth and nucleation of voids are active
Line 10 (3G10.0) Nucleation model parameters
$F_{N}$ Total nucleated porosity ratio, param(36, ilaw)
$S_{N}$ Standard deviation, param(37, ilaw)
$\epsilon_{N}$ Standard mean, param(38, ilaw)
CASE (3): Growth, nucleation and coalescence are active
Line 10 (3G10.0) Nucleation model parameters
$F_{N}$ Total nucleated porosity ratio, param(36, ilaw)
$S_{N}$ Standard deviation, param(37, ilaw)
$\epsilon_{N}$ Standard mean, param(38, ilaw)
Line 11 (3G10.0) Coalescence model parameters
$f_{U}$ Ultimate porosity ratio, param(39, ilaw)
$f_{F}$ Fracture porosity ratio, param(40, ilaw)
$f_{cr}$ Critical porosity ratio for coalescence onset, VARIN(19,ilaw) [If 0, Thomason criterion is applied]

… If the previous was the $n^{th}$ line…

IF IDELEM = 1 THEN
Line $(n+1)^{th}$ (2G10.0) DELEM control parameters
FDELEM Porosity ratio at which element starts being deleted, param(42, ilaw)
TDELEM Time for deleting the element (linear interpolation), param(43, ilaw)
laws/cazacutn.txt · Last modified: 2022/10/14 15:52 by carlos