User Tools

Site Tools


appendices:a8

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
appendices:a8 [2023/11/29 13:57]
arthur [Water Retention Curves]
appendices:a8 [2024/06/17 11:21] (current)
arthur
Line 7: Line 7:
 155-119-120-126-127-128-171-172-173-174-175-180-197-95-198-196-176-177-199-194-182-629 ​ 155-119-120-126-127-128-171-172-173-174-175-180-197-95-198-196-176-177-199-194-182-629 ​
  
-|Parameter| Law| +^ISR = 0 - Saturated medium^^
-|Parameter|  +
- +
-^ISR = 0^^+
 The saturation degree stays equal to one: \[S_w = 1\] The saturation degree stays equal to one: \[S_w = 1\]
  
 ^ISR = 1 ^^ ^ISR = 1 ^^
-\[S_w = S_{r,​field}-CSR1\left(\frac{s}{CSR3}\right)^{CSR2}\]  +\[S_w = S_{r,​field}-CSW1\left(\frac{s}{CSW3}\right)^{CSW2}\]  
-With: $s=p_a-p_w$ ​\\ +The suction is defined as $s=p_a-p_w$ ​and $CSR3$ can be taken equal to $\rho_w.g.C^{ste}$. 
-Example: \[CSR1 = 0.09686 \\ CSR2 = 2.428 \\ CSR3 \rho_w.g.C^{ste}\]+
  
 ^ISR = 2 ^^ ^ISR = 2 ^^
Line 22: Line 18:
  
 ^ISR = 3 ^^  ^ISR = 3 ^^ 
-\[ S_e(p_c)= ​ \begin{cases} ​ CSR3+\left(1+\left(\frac{p_c}{CSR1}\right)^{\frac{1}{1-CSR2}}\right)^{-CSR2} & \quad \text{if } p_c>0 \\ 1 & \quad \text{if } p_c \leq 0 \end{cases}\] Example: \[CSR1 = 10^7 Pa \\ CSR2 = 0.412 \\ CSR3=0\]+\[ S_e(p_c)= ​ \begin{cases} ​ CSR3+\left(1+\left(\frac{p_c}{CSR1}\right)^{\frac{1}{1-CSR2}}\right)^{-CSR2} & \quad \text{if } p_c>0 \\ 1 & \quad \text{if } p_c \leq 0 \end{cases}\]
  
 ^ISR = 4 ^^ ^ISR = 4 ^^
- \[S_w = \begin{cases} CSR1 ln\left(\frac{s}{10^6}\right) +CSR2 & \quad \text{if } 0.26 \text{ MPa}<​s<​222\text{ MPa} \\ S_{res} ​ & \quad \text{if } s>222 \text{ MPa} \\ S_{r,​field} ​ & \quad \text{if } s<0.26 \text{ MPa}\end{cases}\]+ \[S_w = \begin{cases} CSR1 ln\left(\frac{s}{10^6}\right) +CSR2 & \quad \text{if } 0.26 \text{ MPa}<​s<​222\text{ MPa} \\ S_{res} ​ & \quad \text{if } s>222 \text{ MPa} \\ S_{r,​field} ​ & \quad \text{if } s<0.26 \text{ MPa}\end{cases}\]
  
-^ISR = 5 ^^  +^ISR = 5 Van Genuchten formulation^^ 
-Van Genuchten formulation+
 \[S_w = S_{res} + (S_{max}-S_{res})\left(1+\left(\frac{s}{CSR1}\right)^{CSR2}\right)^{-\left(1-\frac{1}{CSR2}\right)}\] \[S_w = S_{res} + (S_{max}-S_{res})\left(1+\left(\frac{s}{CSR1}\right)^{CSR2}\right)^{-\left(1-\frac{1}{CSR2}\right)}\]
  
-^ISR = 50^^  +^ISR = 6^^ 
-For Mothymar law + \[S_w = S_{res}+\frac{CSR3*(S_{r,​field}-S_{res})}{CSR3+(CSR1*s)^{CSW2}}\]
-\[S_w = 1 * \left(1+\left(\frac{s}{CSR1}\right)^{CSR2}\right)^{CSR3}\] +
-\[S_{w,mic} = 1 * \left(1+\left(\frac{s}{CSR4}\right)^{CSR2}\right)^{CSR5}\]+
  
-^ISR = 52 ^^  +^ISR = ^^ 
-Van Genuchten formulation (ISR.EQ.5) with independent CSW2 and COEFM + ​\[S_w=\frac{CSR1 \log(s*10^{-6})+CSR2}{100} \\ \text{If } S_w<S_{res=> S_w = S_{res} \\ \text{If S_w>S_{r,field=> S_w = S_{r,field}\]
-\[S_w = S_{res} + (S_{max}-S_{res})\left(1+\left(\frac{s}{CSR1}\right)^{CSR2}\right)^{CSR3}\]+
  
-^ISR = 53 ^^  
-Van Genuchten model (ISR=5) with hysteresis implemented.\\ The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model: \\ \[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\] \[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\] \\ The hysteresis is then defined by: \\ \[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w = a_w \left(S_e^{-1/​m_w}\right)^{1/​n_w}\] \[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/​m_d}\right)^{1/​n_d}\] \\ And therefore: \\ \[S_e^{t+1} = S_e^t + \left(\frac{\partial S_{es}}{\partial s}\right)\times ds\] \\ The ISR=53 parameters are: CSRW1=$a_d$,​ CSRW2=$n_d$,​ CSRW3=$a_w$,​ CSRW4=$n_w$ and CSRW5=$b$ 
  
-^ISR=6^^ +^ISR = 8^^ 
- \[S_w = S_{res}+\frac{CSR3(S_{r,field}-S_{res})}{CSR3+(CSR1*s)^{CSW2}}\]+ ​\[S_w=\frac{CSR3}{\pi}\arctan\left(-\frac{s+CSR2}{CSR1}\right)+\frac{CSR3}{2}\] {{ :​appendices:​a8_1.png?​300 |}}
  
-^ISR = 15^^ +^ISR = 9 -  Quasi-saturated soils (XL2)^^ 
-Andra for swelling clay (MX80) +\[S_w\left(1\frac{p_w}{p_a}\right)*S_{r,field}*\frac{1}{1+\frac{p_w}{p_a}*S_{r,field}*(1-HENRY)}\]
-\[SATUR  ​= ((1D0+(PC/CSW3)**COEFM)**(-CSW1))*((1D0-PC/​CSW4)**CSW2)\]+
  
-^ISR = 19^^ +^ISR = 10 - Fixed WRC (Comparaison eclipse)^^ 
-idem as ISR = 5 with the addition ​of AIREV in the van Genuchten formulation: \[S_w =  + 
- ​\begin{cases} 1 & \quad \text{if } s < \text{AIREV} \\ S_{res}+(S_{max}-S_{res})\left(1+\left(\frac{s-AIREV}{CSR1}\right)^{CSR2}\right)^{-\left(1-\frac{1}{CSR2}\right)} & \quad \text{if } s > \text{AIREV} \end{cases}\]+^ISR = 11 Fixed WRC (Comparaison eclipse)^^ 
 + 
 +^ISR = 12 - Fixed WRC (Comparaison eclipse)^^ 
 + 
 +^ISR = 13^^ 
 +\[S_w= CSW3*\left(\frac{\arctan\left(-(s+CSW2)/​CSW1\right)}{\pi}+0.5\right)\] 
 + 
 +^ISR = 14 - Fixed WRC (Comparaison eclipse)^^ 
 + 
 + 
 +^ISR = 15 - Andra for swelling clay (MX80)^^ 
 +\[COEFM ​ = 1-\frac{}{CSW2}\] 
 +\[S_w= \left(\left(1+\left(\frac{s}{CSW3}\right)^{COEFM}\right)^{-CSW1}\right)*\left(1-\frac{s}{CSW4}\right)^{CSW2}\] 
 + 
 +^ISR = 16 - Andra for argilities - Van Genuchten^^ 
 +\[COEFM ​ = 1-\frac{}{CSW2}\] 
 +\[SATUR ​ = (1-CSW3-CSW4)*(1D0+(PC/​CSW1)**CSW2)**(-COEFM)+CSW3\] 
 + 
 +^ISR = 17 -  (EPFL-LMS, Lausanne)^^ 
 +Parameter correspondance:​ \\ CSW1=$\beta_h$ \\ CSW2=$s_{hys}$ \\ CSW3=$\theta_T$ \\ CSW4=$\theta_e$ \\ CSW5=RETINI  
 + 
 +An elasto-plastic approach is used to describe ​the curve of retention ​of the soil. This implies two plastic mechanisms:​ 
 +→ A mechanism activated during drying $f_{dry}=s-s_d=0$ 
 +→ A mechanism activated during the wetting $f_{wet}=s_d s_{hys} - s=0$ 
 +Where $s_d$ is the drying limit and $s_{hys}$ is a parameter defining the opening of the hydric hysteresis. When a mechanism is activated, $s_d$ evolves according to the following exponential law: $s_d=s_{d0}\exp(-\beta_h \Delta S_w)$ {{ :​appendices:​a8_2.png?​300 |}} 
 + 
 +The effects of mechanical deformation and of temperature on the retention curve are considered through the evolution of the entering air suction: \[s_e=s_{e0}\exp(-\beta \Delta ​S_w)\left[1-\theta_T\log(T/​T_0)-\theta_e \log(1-\varepsilon_v)\right]\] In order to characterize the initial degree of saturation inside the hydric hysteresis, the RETINI parameter is used. At the initial state, for a given suction, if RETINI ​0, the point is on the drying curve; if RETINI = 1, the point is on the wetting curve. RETINI can also take a value between 0 and 1. In that case, the saturation degree is determined using a linear interpolation between the drying curve and the wetting curve. 
 + 
 +^ISR = 18 - (EPFL-LMS, Lausanne)^^ 
 +Parameter correspondance:​ \\ CSW1=$s_{D0}$ \\ CSW2=$\kappa_H$ \\ CSW3=$\beta_H$ \\ CSW4=$\pi_H$ \\ CSW5=RETINI 
 + 
 +The water retention curve is modeled using an elasto-plastic approach with kinematic hardening (ACMEG-s model, LMS, EPFL) {{ :​appendices:​a8_3.png?​300 |}} The yield surface delimiting the elastic domain takes the following form: \[f=\left\Vert ln\left(\frac{s}{s_D}\right)+\frac{1}{2}ln\left(\frac{s_{D0}}{s_{eH}}\right)\right\Vert - \frac{1}{2} ln \left(\frac{s_{D0}}{s_{eH}}\right)\] The saturation degree $S_w$ can be decomposed in an elastic part $S_w^e$ and a plastic part $S_w^p$: \[S_w = S_w^e+S_w^p\] The elastic part is defined by parameter $\kappa_H$ \[S_w^e=1- \frac{1}{\kappa_H}ln\frac{s}{s_{eH}}\] The plastic part is defined by: \[S_w^p=S_w^D-\frac{1}{\beta_H}\ln\frac{s}{s_D}\] The saturation degree cannot be higher than 1 or lower than $S_{res}$. 
 + 
 +The entering air suction $s_{eH}$ evolves with the total volumic deformation:​ \[s_{eH}=s_e+\pi_H*\varepsilon_v\] In order to characterize the initial degree of saturation inside the hydric hysteresis, the RETINI parameter is used. At the initial state, for a given suction, if RETINI = 0, the point is on the drying curve; if RETINI = 1, the point is on the wetting curve. RETINI can also take a value between 0 and 1. In that case, the saturation degree is determined using a linear interpolation between the drying curve and the wetting curve. 
 + 
 +^ISR = 19 - ISR = 5 with the addition of AIREV^^ 
 +\[S_w = \begin{cases} 1 & \quad \text{if } s < \text{AIREV} \\ S_{res}+(S_{max}-S_{res})\left(1+\left(\frac{s-AIREV}{CSR1}\right)^{CSR2}\right)^{-\left(1-\frac{1}{CSR2}\right)} & \quad \text{if } s > \text{AIREV} \end{cases}\]
  
 ^ISR = 20^^ ^ISR = 20^^
 \[SATUR ​ = SRES+(SRFIELD-SRES)*(1D0+(PC/​PR)**CSW2)**(-COEFM)\] \[SATUR ​ = SRES+(SRFIELD-SRES)*(1D0+(PC/​PR)**CSW2)**(-COEFM)\]
  
-^ISR=21^^ +^ISR=21 ​Andra for Bentonite (UPC)^^
-Andra for Bentonite (UPC)+
 \[COEFM ​ = ONE-ONE/​CSW2\] \[COEFM ​ = ONE-ONE/​CSW2\]
 \[SATUR ​ = (ONE+(PC/​CSW1)**CSW2)**(-COEFM)*(ONE-PC/​CSW3)**CSW4\] \[SATUR ​ = (ONE+(PC/​CSW1)**CSW2)**(-COEFM)*(ONE-PC/​CSW3)**CSW4\]
  
-^ISR = 22^^ +^ISR = 22 - Romero ​et al., 2011^^
-Romera ​et al., 2011+
  
-^ISR = 23^^ +^ISR = 23 Unconstant parameters, function of the porosity^^ 
-Unconstant parameters, function of the porosityFor laws WADUA, CLEATF and WPROG. (François BERTRAND).+For laws WADUA, CLEATF and WPROG. (François BERTRAND).
  
-^ISR = 25^^ +^ISR = 25 Van Genuchten with "​true"​ air-entry pressure (aept).^^ 
-Van Genuchten with "​true"​ air-entry pressure (aept). +\[COEFM ​ = 1-\frac{1}{CSW2}\] 
-\[COEFM ​ = ONE-ONE/CSW2\] +\[S_w  ​= ​S_{res}+(S_{r,field}-S_{res})*\left(1+\left(\frac{s-AEPT}{CSW1}\right)^{CSW2}\right)^{-COEFM}\]
-\[SATUR  ​= ​SRES+(SRFIELD-SRES)*(ONE+((PC-AEPT)/CSW1)**CSW2)**(-COEFM)\]+
  
-^ISR = 26^^ +^ISR = 26 Double structure mechanism adsorption^^ 
-Double structure mechanism adsorption\[e_w=e_{wM}+e_{wm}\] \[e_w=e_m \exp \left(-(C_{ads}s)^{n_{ads}}\right) + (e-e_m) \left[1+\left( (e-e_m)\frac{s}{A}\right)^n\right]^{-m} \] \[S_r=\frac{e_w}{n}\] $n$=porosity \\ CSR1 = $A$ \\ CSR2 = $m$ \\ CSR3 = $n$ \\ CSR4 = $C_{ads}$ \\ CSR5 = $n_{ads}$ +\[e_w=e_{wM}+e_{wm}\] \[e_w=e_m \exp \left(-(C_{ads}s)^{n_{ads}}\right) + (e-e_m) \left[1+\left( (e-e_m)\frac{s}{A}\right)^n\right]^{-m} \] \[S_r=\frac{e_w}{n}\] $n$=porosity \\ CSR1 = $A$ \\ CSR2 = $m$ \\ CSR3 = $n$ \\ CSR4 = $C_{ads}$ \\ CSR5 = $n_{ads}$
- +
-^ISR = 7 ^^ +
- ​\[S_w=\frac{CSR1 \log(s*10^{-6})+CSR2}{100} \\ \text{If } S_w<​S_{res} => S_w = S_{res} \\ \text{If } S_w>​S_{r,​field} => S_w = S_{r,​field}\]+
  
 ^ISR = 27^^ ^ISR = 27^^
 \[SATUR ​ = DEXP(-PC/​CSW1)\] \[SATUR ​ = DEXP(-PC/​CSW1)\]
  
-^ISR = 8^^ +^ISR = 50 - For Mothymar law^^  
- ​\[S_w=\frac{CSR3}{\pi}\arctan\left(-\frac{s+CSR2}{CSR1}\right)+\frac{CSR3}{2}\] {{ :​appendices:​a8_1.png |}}+\[S_w = 1 * \left(1+\left(\frac{s}{CSR1}\right)^{CSR2}\right)^{CSR3}\] 
 +\[S_{w,mic} = 1 * \left(1+\left(\frac{s}{CSR4}\right)^{CSR2}\right)^{CSR5}\]
  
-^ISR = 9^^ +^ISR = 52 ISR=5 with independent CSW2 and COEFM^^  
- ​Quasi-saturated soils +\[S_w S_{res} ​(S_{max}-S_{res})\left(1+\left(\frac{s}{CSR1}\right)^{CSR2}\right)^{CSR3}\]
-\[SATUR (ONE R)*SRFIELD/(ONE+R*SRFIELD*(ONE-HENRY))\]+
  
-^ISR = 10^^ +^ISR = 53 - ISR=5 with hysteresis implemented.^^ 
-Comparaison eclipse+
  
-^ISR 11^^ +The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model: 
-Comparaison eclipse+\[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\] ​ 
 +\[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]
  
-^ISR 12^^ +The hysteresis is then defined by: 
-Comparaison eclipse+\[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w a_w \left(S_e^{-1/​m_w}\right)^{1/​n_w}\] ​ 
 +\[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/​m_d}\right)^{1/​n_d}\]
  
-^ISR 14^+And therefore: \[S_e^{t+1} S_e^t + \left(\frac{\partial S_{es}}{\partial s}\right)\times ds\] 
-Comparaison eclipse+
  
-^ISR = 13^^ +The ISR=53 parameters are: CSRW1=$a_d$, CSRW2=$n_d$,​ CSRW3=$a_w$,​ CSRW4=$n_w$ and CSRW5=$b$.
-\[SATURCSW3*(DATAN(-(PC+CSW2)/​CSW1)/​PI+HALF)\]+
  
-^ISR = 16^^ +/!Two parameters must be passed through the DUM argument of FKRST: DUM(1)=$s^{t-1}$ and DUM(2)=$S_w^{t-1}$.
-Andra for argilities - Van Genuchten +
-\[COEFM ​ = 1D0-1D0/CSW2\+
-\[SATUR ​ = (1-CSW3-CSW4)*(1D0+(PC/​CSW1)**CSW2)**(-COEFM)+CSW3\]+
  
-^ISR = 17^^ +^ISR = 55, Soil water retention curve considering gas entry pressure (EURAD-Gas Task4.2).^^  
- (EPFL-LMSLausanne) \\ Parameter correspondance: ​\\ CSW1=$\beta_h$ ​\\ CSW2=$s_{hys}\\ CSW3=$\theta_T$ ​\\ CSW4=$\theta_e$ ​\\ CSW5=RETINI \\ \\ An elasto-plastic approach is used to describe the curve of retention of the soil. This implies two plastic mechanisms: ​\\ → A mechanism activated during drying $f_{dry}=s-s_d=0$ ​\\ → A mechanism activated during the wetting $f_{wet}=s_d s_{hys} - s=0$ \\ Where $s_d$ is the drying limit and $s_{hys}$ is a parameter defining the opening of the hydric hysteresisWhen a mechanism is activated$s_d$ evolves according to the following exponential law: $s_d=s_{d0}\exp(-\beta_h ​\Delta S_w){{ :​appendices:​a8_2.png?​300 |}} \\ The effects of mechanical deformation and of temperature on the retention curve are considered through the evolution of the entering air suction: ​\[s_e=s_{e0}\exp(-\beta \Delta S_w)\left[1-\theta_T\log(T/T_0)-\theta_e ​\log(1-\varepsilon_v)\right]\] ​In order to characterize ​the initial degree of saturation inside the hydric hysteresis, the RETINI parameter is usedAt the initial statefor a given suction, if RETINI ​0, the point is on the drying curve; if RETINI ​1, the point is on the wetting curveRETINI can also take a value between 0 and 1In that casethe saturation degree is determined using a linear interpolation between ​the drying curve and the wetting curve.+ 
 +In the below formulations,​ $p_c$ and is the capillary pressure ​($p_c=p_{air}-p_{water}$)$α$ is the inverse of air-entry pressure i.e., $P_r$, $S_e$ is the effective degree of water saturation, $S_l$ is the degree of water saturation, $S_r$  is residual degree of water saturation, $S_e^*$ is the effective degree of saturation considering the explicit gas entry pressure i.e., $P_e$, $ε$ is a numerical parameter (0.01 or 0.001), $m$ and $n$  are fitting parameters. 
 + 
 +\[ p_c= \begin{cases} -\frac{1}{\alpha}\left ( \left ( S_{e}^{*}S_{e}\right )^{-\frac{1}{m}}-1\right)^{\frac{1}{n}}, ​\quad \text{if} ​\; S_{e}\leq 1-\varepsilon 
 +\\  
 +-\frac{1}{\alpha}\left ( \left ( S_{e}^{*}S_{e}\right )^{-\frac{1}{m}}-1\right)^{\frac{1}{n}}.\left ( \frac{1-S_{e}}{\varepsilon } \right )\quad \text{if} \; \left 1-\varepsilon ​\right < S_{e}< 1 
 +\\  
 +0, \quad \text{if\; S_{e}=1 
 +\end{cases}\]. 
 + 
 +\[ S_{e}=\frac{S_{l}-S_{r}}{1-S_{r}}\
 +\[ S_{e}^{*}=\left 1+\left (\alpha P_{e}  \right ​)^{n}  \right )^{-m}\
 +\[ m=\left ​( 1-\frac{1}{n} ​\right ​)\] 
 +\[ \alpha =\frac{1}{P_{r}}\] 
 + 
 +So as per the above formulations, the required parameters are as follows: 
 + 
 +**CSR1** = Air-entry pressure i.e., $P_r$  
 + 
 +**CSR2** ​$n$ 
 + 
 +**CSR3** ​Gas entry pressure i.e., $P_e$ 
 + 
 +**CSR4** = $\varepsilon$ 
 + 
 +**CSR5** = Residual degree of water saturation ​i.e., $S_r$ 
 + 
 +**CSR6** = Max. degree ​of water saturation i.e., 1 
 + 
 +**CSR7** = NIL 
 + 
 +/**NOTE**\ The above water retention curve is implemented in conjunction with the water and air relative permeability functions which also consider ​the effect of gas entry pressure. It is advised to go through these formulations i.e., **IKW=55** for relative permeability function for water and **IKA=55** for air.
  
-^ISR = 18^^ 
- ​(EPFL-LMS,​ Lausanne) \\ Parameter correspondance:​ \\ CSW1=$s_{D0}$ \\ CSW2=$\kappa_H$ \\ CSW3=$\beta_H$ \\ CSW4=$\pi_H$ \\ CSW5=RETINI \\ The water retention curve is modeled using an elasto-plastic approach with kinematic hardening (ACMEG-s model, LMS, EPFL) {{ :​appendices:​a8_3.png?​300 |}} The yield surface delimiting the elastic domain takes the following form: \[f=\left\Vert ln\left(\frac{s}{s_D}\right)+\frac{1}{2}ln\left(\frac{s_{D0}}{s_{eH}}\right)\right\Vert - \frac{1}{2} ln \left(\frac{s_{D0}}{s_{eH}}\right)\] The saturation degree $S_w$ can be decomposed in an elastic part $S_w^e$ and a plastic part $S_w^p$: \[S_w = S_w^e+S_w^p\] The elastic part is defined by parameter $\kappa_H$ \[S_w^e=1- \frac{1}{\kappa_H}ln\frac{s}{s_{eH}}\] The plastic part is defined by: \[S_w^p=S_w^D-\frac{1}{\beta_H}\ln\frac{s}{s_D}\] The saturation degree cannot be higher than 1 or lower than $S_{res}$. \\ The entering air suction $s_{eH}$ evolves with the total volumic deformation:​ \[s_{eH}=s_e+\pi_H*\varepsilon_v\] In order to characterize the initial degree of saturation inside the hydric hysteresis, the RETINI parameter is used. At the initial state, for a given suction, if RETINI = 0, the point is on the drying curve; if RETINI = 1, the point is on the wetting curve. RETINI can also take a value between 0 and 1. In that case, the saturation degree is determined using a linear interpolation between the drying curve and the wetting curve. 
  
  
 ===== Water relative permeability ===== ===== Water relative permeability =====
  
-  * **__IKW ​0__** \[k_{rw} = 1\] +^IKW 0^^   
-  * **__IKW ​1__** \[k_{rw} = CKW3 - CKW1 (1-S_{r,​w})^{CKW2}\] ​__Example__: CKW1 = 2.207; CKW2 = 0.953; CKW3 = 1 +\[k_{rw} = 1\] 
-  * **__IKW ​2__** \[k_e^{rel} (S_e) = \left(1+\left(S_{r,​w}^{CKW1} - 1\right)^{CKW2}\right)^{-1}\] ​__Example__: Momas: CKW1 = -2.429; CKW2 = 1.176 + 
-  * **__IKW ​3__** \[k_{r,w} = \begin{cases} \exp(CKW1*S_w+CKW2*S_w^2) & \quad \text{if } S_w \geq S_{res} \\ k_{r,min} & \quad \text{if } S_w<​S_{res} \end{cases} \] +^IKW 1^^    
-  * **__IKW ​4__** \[k_{r,w} = \begin{cases} \frac{(S_w-S_{res})^{CKW1}}{(S_{r,​field}-S_{res})^{CKW2}} & \quad \text{if } S_w \geq S_{res} \\ k_{r,min} & \quad \text{if } S_w<​S_{res} \end{cases} \] __Example__:​ $CKW1 = 4$; $CKW2 = 4$; $S_{r,​field} = 1$; $S_{res}=0.1$ +\[k_{rw} = CKW3 - CKW1 (1-S_{r,​w})^{CKW2}\] ​ 
-  * **__IKW ​7__** \[k_{rw}=\sqrt{S_{rw}} \left(1-\left(1-S_{rw}^{\frac{1}{CKW1}}\right)^{CKW1}\right)^2\] +Example: CKW1 = 2.207; CKW2 = 0.953; CKW3 = 1 
-  * **__IKW ​8__** \[k_{rw} = S_{rw}^3\] + 
-  * **__IKW ​9__** \[k_{rw}=\sqrt{S_{we}} \left(1-\left(1-S_{we}^{\frac{1}{CKW1}}\right)^{CKW1}\right)^2\] \[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] \[S_{rw,​res}=CKW2\] \[S_{rg,​res}=CKW3\]+^IKW 2^^  
 +\[k_e^{rel} (S_e) = \left(1+\left(S_{r,​w}^{CKW1} - 1\right)^{CKW2}\right)^{-1}\] ​ 
 +Example: Momas: CKW1 = -2.429; CKW2 = 1.176 
 + 
 +^IKW 3^^    
 +\[k_{r,w} = \begin{cases} \exp(CKW1*S_w+CKW2*S_w^2) & \quad \text{if } S_w \geq S_{res} \\ k_{r,min} & \quad \text{if } S_w<​S_{res} \end{cases} \] 
 + 
 +^IKW 4^^  
 +\[k_{r,w} = \begin{cases} \frac{(S_w-S_{res})^{CKW1}}{(S_{r,​field}-S_{res})^{CKW2}} & \quad \text{if } S_w \geq S_{res} \\ k_{r,min} & \quad \text{if } S_w<​S_{res} \end{cases} \] __Example__:​ $CKW1 = 4$; $CKW2 = 4$; $S_{r,​field} = 1$; $S_{res}=0.1$ 
 + 
 +^IKW 7^^  
 +  
 +\[k_{rw}=\sqrt{S_{rw}} \left(1-\left(1-S_{rw}^{\frac{1}{CKW1}}\right)^{CKW1}\right)^2\] 
 + 
 +^IKW 8^^  
 + \[k_{rw} = S_{rw}^3\] 
 + 
 +^IKW 9^^   
 +\[k_{rw}=\sqrt{S_{we}} \left(1-\left(1-S_{we}^{\frac{1}{CKW1}}\right)^{CKW1}\right)^2\] ​ 
 +\[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] \[S_{rw,​res}=CKW2\] \[S_{rg,​res}=CKW3\] 
 + 
 +^IKW = 55, Relative permeability function for water considering gas entry pressure (EURAD-Gas Task4.2).^^  
 + 
 +Similar to **ISR = 55**, $p_c$ is the capillary pressure ($p_c=p_{air}-p_{water}$),​ $α$ is the inverse of air-entry pressure i.e., $P_r$, $S_e$ is the effective degree of water saturation, $S_l$ is the degree of water saturation, $S_r$  is residual degree of water saturation, $S_e^*$ is the effective degree of saturation considering the explicit gas entry pressure i.e., $P_e$, $m$ and $n$  are fitting parameters. 
 + 
 +\[ k_{rw}= \begin{cases} \sqrt{S_{e}}\left [ \frac{1-\left ( 1-\left (S_{e}^{*}S_{e} \right )^{1/m} \right )^{m}}{1-\left ( 1-\left (S_{e}^{*}\right )^{1/m} \right )^{m}} \right ]^{2}, \quad \text{if} \; S_{e}\leq 1 
 +\\  
 +1, \quad \text{if} \; S_{e} = 1 
 +\end{cases}\]. 
 + 
 +\[ S_{e}=\frac{S_{l}-S_{r}}{1-S_{r}}\] 
 +\[ S_{e}^{*}=\left ( 1+\left (\alpha P_{e}  \right )^{n}  \right )^{-m}\] 
 +\[ m=\left ( 1-\frac{1}{n} \right )\] 
 +\[ \alpha =\frac{1}{P_{r}}\] 
 + 
 +/**NOTE**\ The above formulation is implemented in conjunction with either **ISR=5** or **ISR=55**. In case of ISR=55, it will automatically adopt the required parameters from the definition of soil water retention curve. Whereas, in case of ISR=5 (Classical Van Genuchten formulation) CSR3 will represent the gas entry pressure i.e. $P_{e}$. The definition of remaining parameters will be same.  
 ===== Air relative permeability ===== ===== Air relative permeability =====
  
-  * **__IKA ​0__** \[k_{ra}=1\] +^IKA 0^^   
-  * **__IKA ​1__** \[k_{ra} = (1-S_e)^{CKA1}(1-S_e^{CKA2})\] \[S_e=\frac{S_{rw}-S_{rw,​u}}{1-S_{rw,​u}}\] ​__Example__: CKA1 = 2; CKA2 = 5/3 +\[k_{ra}=1\] 
-  * **__IKA ​2__** \[k_{r,​a}=CKA1\] + 
-  * **__IKA ​3__** \[S_e = \frac{S_{r,​w}-S_{r,​u}}{1-S_{rw,​u}} \\ \begin{cases} \text{If } S_e<0 => S_e = 0 \\ \text{If } 0<​S_e<​0.55 => k_{ra}=(0.55-S_e)^{CKA1}(1-S_e^{CKA2}) \\ \text{If } S_e>0.55 => k_{ra}=k_{rmin} \end{cases} \] __Remark__:  \[k_{w,​effectif}=k_{f,​intrinsic}k_{rw} \\ k_{a,​effectif}=k_{f,​intrinsic}k_{aw}\] +^IKA 1^^   
-  * **__IKA ​6__** \[k_{ra}=\sqrt{1-S_{r,​w}}\left(1-S_{r,​w}^{\frac{1}{CKA1}}\right)^{2CKA1}\] +\[k_{ra} = (1-S_e)^{CKA1}(1-S_e^{CKA2})\] \[S_e=\frac{S_{rw}-S_{rw,​u}}{1-S_{rw,​u}}\] ​ 
-  * **__IKA ​7__** \[k_{ra}=\sqrt{1-S_{we}}\left(1-S_{we}^{\frac{1}{CKA1}}\right)^{2CKA1}\] \[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] \[S_{rw,​res}=CKA2\] \[S_{rg,​res}=CKA3\] +Example: CKA1 = 2; CKA2 = 5/3 
-  * **__IKA ​8__** \[k_{ra}=CKA2(1-S_{we})^{CKA1}\] \[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\]+ 
 +^IKA 2^^    
 +\[k_{r,​a}=CKA1\] 
 + 
 +^IKA 3^^    
 +\[S_e = \frac{S_{r,​w}-S_{r,​u}}{1-S_{rw,​u}} \\ \begin{cases} \text{If } S_e<0 => S_e = 0 \\ \text{If } 0<​S_e<​0.55 => k_{ra}=(0.55-S_e)^{CKA1}(1-S_e^{CKA2}) \\ \text{If } S_e>0.55 => k_{ra}=k_{rmin} \end{cases} \]  
 +Remark:  \[k_{w,​effectif}=k_{f,​intrinsic}k_{rw} \\ k_{a,​effectif}=k_{f,​intrinsic}k_{aw}\] 
 + 
 +^IKA 6^^    
 +\[k_{ra}=\sqrt{1-S_{r,​w}}\left(1-S_{r,​w}^{\frac{1}{CKA1}}\right)^{2CKA1}\] 
 + 
 +^IKA 7^^   
 +\[k_{ra}=\sqrt{1-S_{we}}\left(1-S_{we}^{\frac{1}{CKA1}}\right)^{2CKA1}\] ​ 
 +\[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] \[S_{rw,​res}=CKA2\] ​ 
 +\[S_{rg,​res}=CKA3\] 
 + 
 +^IKA 8^^   
 +\[k_{ra}=CKA2(1-S_{we})^{CKA1}\] ​ 
 +\[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] 
 + 
 +^IKA = 55, Relative permeability function for gas considering gas entry pressure (EURAD-Gas Task4.2). ^^  
 + 
 +Similar to **ISR = 55**, $p_c$ is the capillary pressure ($p_c=p_{air}-p_{water}$),​ $α$ is the inverse of air-entry pressure i.e., $P_r$, $S_e$ is the effective degree of water saturation, $S_l$ is the degree of water saturation, $S_r$  is residual degree of water saturation, $S_e^*$ is the effective degree of saturation considering the explicit gas entry pressure i.e., $P_e$, $m$ and $n$  are fitting parameters. Additionally,​ $f_{g}$ is the ratio of intrinsic permeability values for Gas ($K_{Gas}$) to Water ($K_{Water}$). 
 + 
 +\[ k_{rg}= \begin{cases} f_{g}\sqrt{1-S_{e}}\left [ \frac{\left ( 1-\left (S_{e}^{*}\right )^{1/m} \right )^{m}-\left ( 1-\left (S_{e}^{*}S_{e} \right )^{1/m} \right )^{m}}{\left ( 1-\left (S_{e}^{*}\right )^{1/m} \right )^{m}-1} \right ]^2, \quad \text{if} \; S_{e}\leq 1 
 +\\  
 +0, \quad \text{if} \; S_{e} = 1 
 +\end{cases}\]. 
 +\[ f_{g}=\frac{K_{Gas}}{K_{Water}}\] 
 +\[ S_{e}=\frac{S_{l}-S_{r}}{1-S_{r}}\] 
 +\[ S_{e}^{*}=\left ( 1+\left (\alpha P_{e}  \right )^{n}  \right )^{-m}\] 
 +\[ m=\left ( 1-\frac{1}{n} \right )\] 
 +\[ \alpha =\frac{1}{P_{r}}\] 
 + 
 + 
 +/**NOTE**\ Similar to IKW=55, the above formulation is implemented in conjunction with either **ISR=5** or **ISR=55**. In case of ISR=55, it will automatically adopt the required parameters from the definition of soil water retention curve, EXCEPT the parameter $f_{g}$.  
 + 
 +So, CKA1 = $f_{g}$ i.e. $\frac{K_{Gas}}{K_{Water}}$ 
 + 
 +Whereas, in case of ISR=5 (Classical Van Genuchten formulation) CSR3 will represent the gas entry pressure i.e. $P_{e}$. The definition of remaining parameters will be same except the parameter CKA1 which will represent $f_{g}$ i.e. $\frac{K_{Gas}}{K_{Water}}$. 
 ===== Thermal conductivity ===== ===== Thermal conductivity =====
 +
 ^  ITHERM ​ ^  $\Gamma_T$ ​ ^ ^  ITHERM ​ ^  $\Gamma_T$ ​ ^
 |  \[1\]  |  \[nS_w\Gamma_w+nS_a\Gamma_a+(1-n)\Gamma_s\]| |  \[1\]  |  \[nS_w\Gamma_w+nS_a\Gamma_a+(1-n)\Gamma_s\]|
 |  \[2\]  |  \[CLT1*S_w +CLT2\]| |  \[2\]  |  \[CLT1*S_w +CLT2\]|
 |  \[3\]  |  \[CLT1 -\frac{CLT2}{1 + exp\left(\frac{S_w -CLT3}{CLT4}\right)}\]| |  \[3\]  |  \[CLT1 -\frac{CLT2}{1 + exp\left(\frac{S_w -CLT3}{CLT4}\right)}\]|
appendices/a8.1701262648.txt.gz · Last modified: 2023/11/29 13:57 by arthur