User Tools

Site Tools


laws:zdmg

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:zdmg [2019/04/05 18:33]
ehssen [Description]
laws:zdmg [2020/08/25 15:46] (current)
Line 5: Line 5:
  
  
-Implemented by: Zhu Yongui, 1992 \\ Modified ​by: Sylvie Castagne, 1997 \\ Ehssen Betaieb, 2019 +Implemented by: Zhu Yongui, 1992 \\ Improved ​by: Sylvie Castagne, 1997 \\ Ehssen Betaieb, 2019 
  
 ==== The model ==== ==== The model ====
Line 35: Line 35:
 ==== Integer parameters ==== ==== Integer parameters ====
  
-^(I5)^^+^Line 1 (8I5)^^
 |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step| |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step|
-|NPOINT| = -1  Law described by parameters (LUDWIK) \\ __**LUDWIK law:**__ SIG = SIGY + AKP*(EPSP∗∗ANP)))|+|NPOINT| = -2  Law described by parameters (SWIFT) \\ __**SWIFT law:**__ SIG = AKP*(EPSP + EPS0)∗∗ANP| 
 +|:::| = -1  Law described by parameters (LUDWIK) \\ __**LUDWIK law:**__ SIG = SIGY + AKP*(EPSP∗∗ANP)|
 |:::| = 0   Law described by parameters (VOCE) \\ __**VOCE law :**__ SIG = SIGY + AKP*(1-EXP(-ANP*EPSP))| |:::| = 0   Law described by parameters (VOCE) \\ __**VOCE law :**__ SIG = SIGY + AKP*(1-EXP(-ANP*EPSP))|
 |:::| > 0   Law described by points| |:::| > 0   Law described by points|
Line 51: Line 52:
 ==== Real parameters ==== ==== Real parameters ====
  
-^Line 1 (6G10.0)^^+^Line 1 (8G10.0)^^
 |ANU| POISSON'​s ratio| |ANU| POISSON'​s ratio|
 |DNMAX| = 0  For EP without damage| |DNMAX| = 0  For EP without damage|
Line 65: Line 66:
 |VISCO| = Viscosity parameter (unit: time)| |VISCO| = Viscosity parameter (unit: time)|
 |THICK| = Thickness for plane state| |THICK| = Thickness for plane state|
-^Line 2 (6G10.0)^^+^Line 2 (3G10.0)^^
 |POND| = Weight of volumetric energy| |POND| = Weight of volumetric energy|
 |:::| (= 0 by default)| |:::| (= 0 by default)|
Line 72: Line 73:
 |FMULP| = Slope multiplicator| |FMULP| = Slope multiplicator|
 |:::| (= 1 by default)| |:::| (= 1 by default)|
-^Line 3 (6G10.0) (If NPOINT= -1)^^+^Line 3 (2G10.0) - Repeated NPOINT times (if NPOINT>​0)^^ 
 +|EPS| = Strain for virgin by uniaxial testing| 
 +|SIG| = Effective stress related to measured stress in tensile state| 
 +|:::| :!: \\ 1) Effective stress-strain curve with hardening and softening phenomenon\\ 2) The first point must be : \\ $\sigma_{y}$ = The initial yiled limit \\ $\epsilon_{e}$ = $\sigma_{y}$ / E | 
 +^Line 3 + NPOINT (2G10.0) - Repeated NPOINT times (if NPOINT>​0)^^ 
 +|DSHEAR| = Deviatoric damage variable| 
 +|B| = Damage strenghthening force (Mpa)|FIXME 
 +|:::| :!: \\ 1) Possible for hardening and softening curve\\ 2) The first point must be : \\ $d$ = 0 \\ $B_{0}$ = The initial damage limit | 
 +{{  :​laws:​dam-ep_fig1.png?​500 ​ |}} 
 +{{  :​laws:​dam-ep_fig2.png?​500 ​ |}} 
 +**If NPOINT= -2** 
 +^Line 3 (6G10.0)^^ 
 +|E| = YOUNG'​s elastic modulus| 
 +|EPS0| = EPS0| 
 +|AKP| = SWIFT hardening coefficient| 
 +|ANP| = SWIFT hardening exponent| 
 +|B0| = Initial damage limit| 
 +|DTG| = Damage tangent modulus| 
 +**If NPOINT= -1** 
 +^Line 3 (6G10.0)^^
 |E| = YOUNG'​s elastic modulus| |E| = YOUNG'​s elastic modulus|
 |SIGY| = Lower yield limit| |SIGY| = Lower yield limit|
Line 79: Line 99:
 |B0| = Initial damage limit| |B0| = Initial damage limit|
 |DTG| = Damage tangent modulus| |DTG| = Damage tangent modulus|
-^Line 3 (6G10.0) (If NPOINT= ​0)^^+**If NPOINT= 0** 
 +^Line 3 (6G10.0) ^^
 |E| = YOUNG'​s elastic modulus| |E| = YOUNG'​s elastic modulus|
 |SIGY| = Lower yield limit| |SIGY| = Lower yield limit|
Line 86: Line 107:
 |B0| = Initial damage limit| |B0| = Initial damage limit|
 |DTG| = Damage tangent modulus| |DTG| = Damage tangent modulus|
- 
-==== Reaped NPOINT times (2G10.0) (If NPOINT > 0)==== 
- 
-|EPS| = Strain for virgin by uniaxial testing| 
-|SIG| = Effective stress related to measured stress in tensile state| 
-|:::| :!: \\ 1) Effective stress-strain curve with hardening and softening phenomenon\\ 2) The first point must be : \\ $\sigma_{y}$ = The initial yiled limit \\ $\epsilon_{e}$ = $\sigma_{y}$ / E | 
- 
- 
-==== Reaped NPOINT times (2G10.0) (If NPOINT > 0)==== 
- 
-|d| = Deviatoric damage variable| 
-|B| = Damage strenghthening force (Mpa)| 
-|:::| :!: \\ 1) Possible for hardening and softening curve\\ 2) The first point must be : \\ $d$ = 0 \\ $B_{0}$ = The initial damage limit | 
 ===== Stresses ===== ===== Stresses =====
 ==== Number of stresses ==== ==== Number of stresses ====
Line 143: Line 151:
 |Q(N+5)| = Plastic work per unit volume| |Q(N+5)| = Plastic work per unit volume|
 |Q(N+6)| = Damage work per unit volume| |Q(N+6)| = Damage work per unit volume|
-|Q(N+7)| = Total strain energy per unit volume (elastic + plastic + damage|+|Q(N+7)| = Total strain energy per unit volume (elastic + plastic + damage)|
 |Q(N+8)| = Fracture criteria| |Q(N+8)| = Fracture criteria|
  
  
laws/zdmg.1554482034.txt.gz · Last modified: 2020/08/25 15:36 (external edit)