This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
laws:persol [2019/10/15 14:27] helene created |
laws:persol [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 185: | Line 185: | ||
=== Criterion with friction angle different from 0 (Drücker Prager or Van Eekelen) === | === Criterion with friction angle different from 0 (Drücker Prager or Van Eekelen) === | ||
- | The regular criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}<\frac{3c}{\tan\phi_c}$ : \[f=II_{\hat{\sigma}}+m\left(I_{\sigma}-\frac{3c}{\tan\phi_c}\right)=0\] with : | + | The regular criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}<\frac{3c}{\tan\phi_c}$ : \[f=II_{\hat{\sigma}}+m\left(I_{\sigma}-\frac{3c}{\tan\phi_c}\right)=0\] with: |
- | - Drücker Prager : $m = \frac{2\sin\phi_c}{\sqrt{3}(3-\sin\phi_c)}$ | + | * Drücker Prager : $m = \frac{2\sin\phi_c}{\sqrt{3}(3-\sin\phi_c)}$ |
- | - Van Eekelen : $m=a(1+b\sin 3\beta)^n$ where $a$ and $b$ are functions of $\phi_C$, $\phi_E$ and $n$.\\ | + | * Van Eekelen : $m=a(1+b\sin 3\beta)^n$ where $a$ and $b$ are functions of $\phi_C$, $\phi_E$ and $n$.\\ |
The apex criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}\geq\frac{3c}{\tan\phi_C}$ : \[f=I_{\sigma}-\frac{3c}{\tan\phi_c}=0\] where $m'$ is the equivalent of $m$ but for the flow surface (i.e. $\phi$ is replaced by $\psi$ ) | The apex criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}\geq\frac{3c}{\tan\phi_C}$ : \[f=I_{\sigma}-\frac{3c}{\tan\phi_c}=0\] where $m'$ is the equivalent of $m$ but for the flow surface (i.e. $\phi$ is replaced by $\psi$ ) |