This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
laws:intfl [2019/09/17 10:08] helene created |
laws:intfl [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 64: | Line 64: | ||
|IENTH| = 0 if we define $\rho$ and $C_p$ for each constituent \\ \[\left\{\begin{array}{l} H_w = n.S_{r,w}.\rho_w.c_{p,w}.(T-T_0) \\ H_v = n.(1-S_{r,w}).\rho_v.c_{p,v}.(T-T_0) \\ H_a = n.(1-S_{r,w}).\rho_a.c_{p,a}.(T-T_0) \\ H_{a-d}=n.S_{r,w}.H.\rho_a.c_{p,a}.(T-T_0) \\ H_s = (1-n).\rho_s.c_{pas}.(T-T_0) \end{array}\right.\] | | |IENTH| = 0 if we define $\rho$ and $C_p$ for each constituent \\ \[\left\{\begin{array}{l} H_w = n.S_{r,w}.\rho_w.c_{p,w}.(T-T_0) \\ H_v = n.(1-S_{r,w}).\rho_v.c_{p,v}.(T-T_0) \\ H_a = n.(1-S_{r,w}).\rho_a.c_{p,a}.(T-T_0) \\ H_{a-d}=n.S_{r,w}.H.\rho_a.c_{p,a}.(T-T_0) \\ H_s = (1-n).\rho_s.c_{pas}.(T-T_0) \end{array}\right.\] | | ||
|:::| = 1 if we define $\rho.C_p$ equivalent for the medium \[H_m=\rho.C_p.(T-T_0) \] | | |:::| = 1 if we define $\rho.C_p$ equivalent for the medium \[H_m=\rho.C_p.(T-T_0) \] | | ||
- | |INDIC|= 0, 1, 2 to define the outside pressures/temperature used in case of no contact (see Use paragraph) | | + | |INDIC|= 0, 1, 2 to define the outside pressures/temperature used in case of no contact (see [[laws:intfl#The model|The model]]) | |
|IKE| = index of the longitudinal intrinsic permeability formulation | | |IKE| = index of the longitudinal intrinsic permeability formulation | | ||
|:::| = 0 : $k_l=k_{l0}$ | | |:::| = 0 : $k_l=k_{l0}$ | |