Constitutive law of longitudinal and transversal flow in porous media for a interface element (FAIL2B or FAIN2B)
This law is only used for non linear analysis of longitudinal seepage in porous media interface element.
The case of free surface seepage is also treated.
Transversal fluid transfer between the bodies depends upon the contact state.
Prepro: LINTEC.F
Lagamine: INTEC2.F
Plane stress state | YES |
Plane strain state | YES |
Axisymmetric state | YES |
3D state | NO |
Generalized plane state | YES |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 117 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (4I5) | |
---|---|
INDIC | = 0, 1, 2 to define the outside pressure used in case of no contact (see The model) |
IKE | index of the longitudinal permeability formulation : |
= 0 → $k_l = k_{l0}$. | |
= 1 → $k_l = f(d) = \frac{\left(D_0 + V\right)^{exp}}{12} = \frac{d^{exp}}{12}$. | |
ITR | index of transmissivity: |
= 0 if FAIL2 element; | |
= 1 if FAIN2 element. | |
IDDL | DDL number (3 = water, 4 = air, 5 = temperature), only for the case NTANA=5 and FAIL2 element. If NTANA $\neq$ 5 or FAIN2 element, IDDL is always equal to 3 (Default value). |
The longitudinal permeability $k$ is an intrinsic permeability $\left(\left[L^2\right]\right)$
($K_l$ is the permeability coefficient $(\left[LT^{-1}\right])$ \[ k_{f,intrinsic} = K_l \frac{\mu_f}{\rho_f g} \\ \left[ L^2 \right] = \left[ LT^{-1} \right] \frac{ \left[ ML^{-1}T^{-1}\right]}{\left[ML^{-3}\right]\left[LT^{-2}\right]} \]
Line 1 (7G10.0) | |
---|---|
PERMEA | fault longitudinal intrinsic permeability (=$k_{l0}$) |
RHO | specific mass of the fluid (=$\rho_f$) |
POROS | fault porosity (=$n_0$) |
EMMAG | storage coefficient (=$C_p$) |
ALPHA | $\alpha$ * parameter used to |
BETA | $\beta$ * define the curve $\theta = \theta(p)$ |
VISCO | fluid dynamic viscosity ($\mu_f=10^{-3}$=default value for water at 20°C) |
Line 2 (6G10.0) | |
THCON | fault transverse transmissivity ($T_{t\_c}$) when contact occurs |
CONVEC | fault transverse transmissivitty ($T_{t\_nc}$) when contact does not occur |
PAMB | atmosphere pressure |
D0 | maximal fault closure in absolute value (correspond to D0 from INTME2 mechanical law) for formulation (IKE=1) |
EXP | exponent (=$exp$) = 2 for cubic law |
EPAIS | fault thickness (useful only if no Goodman's formulation in mechanical law) |
The longitudinal permeability of the fault is computed according to IKE value :
The evolution of the stored fluid volume ($\theta$) with the fluid pressure ($p$) is given by the following functions:
SIG(1) | longitudinal flow in the interface element |
SIG(2) | fluid flow stored as a consequence of the evolution of soil porosity |
SIG(3) | 1st transversal fluid flow in the interface element |
SIG(4) | 2nd transversal fluid flow in the interface element (only if FAIN2) |
4