User Tools

Site Tools


laws:hypofe2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hypofe2 [2023/11/24 09:53]
arthur [Subscale parameters]
laws:hypofe2 [2023/11/29 13:51] (current)
arthur [The model]
Line 1: Line 1:
-====== HYPOFE2 ​**(WIP)**======+====== HYPOFE2 ======
 ===== Description ===== ===== Description =====
 Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC. Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC.
Line 25: Line 25:
   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$
   - Saturation degree $S_w$: \\ Depending on succion $s = p_a - p_w : S_w = f(s)$   - Saturation degree $S_w$: \\ Depending on succion $s = p_a - p_w : S_w = f(s)$
 +
 +=== Saturation degree equation (with FKRSAT) ===
 +ISR = 53 Van Genuchten model (ISR=5) with hysteresis implemented.
 +
 +The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model:
 +\[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\] ​
 +\[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]
 +
 +The hysteresis is then defined by:
 +\[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w = a_w \left(S_e^{-1/​m_w}\right)^{1/​n_w}\] ​
 +\[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/​m_d}\right)^{1/​n_d}\]
 +
 +And therefore:
 +\[S_e^{t+1} = S_e^t + \left(\frac{\partial S_{es}}{\partial s}\right)\times ds\]
 +
 +The ISR=53 parameters are: CSRW1=$a_d$,​ CSRW2=$n_d$,​ CSRW3=$a_w$,​ CSRW4=$n_w$ and CSRW5=$b$
  
 === Mass conservation of dry air === === Mass conservation of dry air ===
Line 48: Line 64:
 ==== Files ==== ==== Files ====
 Prepro: LHYPOFE2.F \\ Prepro: LHYPOFE2.F \\
 +Lagamine: HYPOFE2.F \\
 ===== Availability ===== ===== Availability =====
 |Plane stress state| NO | |Plane stress state| NO |
Line 124: Line 141:
 ===== Stresses ===== ===== Stresses =====
 ==== Number of stresses ==== ==== Number of stresses ====
-24+28
 ==== Meaning ==== ==== Meaning ====
 __In 2D state :__ __In 2D state :__
-|SIG(1)|liquid velocity in the X direction ​$(=f_{wx})$|+|SIG(1)|$\sigma_x$ (unused)| 
-|SIG(2)|liquid velocity in the Y direction ​$(=f_{wy})$|+|SIG(2)|$\sigma_y$ (unused)| 
-|SIG(3)|liquid velocity stored  ​$(=f_{we})$|+|SIG(3)|$\sigma_{xy}$ (unused)| 
-|SIG(4)|none|+|SIG(4)|$\sigma_z$ (unused)
-|SIG(5)|gas total velocity in the X direction ​$(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion+|SIG(5)|Homogenised liquid flow along $x$ $(=f_{wx})$| 
-|SIG(6)|gas total velocity in the Y direction ​$(=f_{ay})$|:::+|SIG(6)|Homogenised liquid flow along $y$ $(=f_{wy})$| 
-|SIG(7)|gas total velocity ​stored $(=f_{ae})$|:::+|SIG(7)|Homogenised liquid flow stored $(=f_{we})$| 
-|SIG(8)|none|:::| +|SIG(8)|Homogenised mean flow of the pollutant along $x$ $(=(f_{px,a}+f_{px,b})/2)$| 
-|SIG(9)|conductive heat flow in the X direction ​$(=f_{tx})$|| +|SIG(9)|Homogenised mean flow of the pollutant along $y$ $(=(f_{py,a}+f_{py,b})/2)$| 
-|SIG(10)|conductive heat flow in the Y direction ​$(=f_{ty})$|| +|SIG(10)|Homogenised pollutant flow stored ​(takes advection ​into account) $(=f_{pe})$| 
-|SIG(11)|energy accumulated by heat capacity $(=f_{te})$|+|SIG(11)|Homogenised diffusive flow of the pollutant along $xfor the current step $(=f_{px,b})$| 
-|SIG(12)|none|| +|SIG(12)|Homogenised diffusive flow of the pollutant along $yfor the current step $(=f_{py,b})$| 
-|SIG(13)|Water vapour velocity in the X direction ​$(=f_{vx})$|| +|SIG(13)|Homogenised ​gas flow along $x$ $(=f_{gx})$| 
-|SIG(14)|Water vapour velocity in the Y direction ​$(=f_{vy})$|| +|SIG(14)|Homogenised ​gas flow along $y$ $(=f_{gy})$| 
-|SIG(15)|Water vapour stored $(=f_{ve})$|+|SIG(15)|Homogenised gas flow stored ​$(=f_{ge})$| 
-|SIG(16)|none|| +|SIG(16)|Advective ​flow of dissolved gas along $x$ (unused)| 
-|SIG(17)|dissolved gas advection ​and diffusion velocity in the X direction|| +|SIG(17)|Advective flow of dissolved gas along $y$ (unused)| 
-|SIG(18)|dissolved gas advection and diffusion velocity in the Y direction|| +|SIG(18)|Unused
-|SIG(19)|dissolved gas advection and diffusion velocity stored|| +|SIG(19)|Unused
-|SIG(20)|none|| +|SIG(20)|Unused
-|SIG(21)|dissolved gas diffusion velocity in the X direction|| +|SIG(21)|Unused
-|SIG(22)|dissolved gas diffusion velocity in the Y direction|| +|SIG(22)|Unused
-|SIG(23)|dissolved gas and diffusion velocity stored|| +|SIG(23)|Unused
-|SIG(24)| none|| +|SIG(24)|Unused
-__In 3D state :__ +|SIG(25)|Unused
-|SIG(1)|liquid velocity in the X direction ​$(=f_{wx})$|+|SIG(26)|Unused
-|SIG(2)|liquid velocity in the Y direction ​$(=f_{wy})$|| +|SIG(27)|Unused
-|SIG(3)|liquid velocity in the Z direction ​$(=f_{wz})$|+|SIG(28)|Unused|
-|SIG(4)|liquid velocity stored ​$(=f_{we})$|| +
-|SIG(5)|gas total velocity in the X direction ​$(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion+
-|SIG(6)|gas total velocity in the Y direction ​$(=f_{ay})$|:::| +
-|SIG(7)|gas total velocity in the Z direction ​$(=f_{az})$|:::+
-|SIG(8)|gas total velocity stored ​$(=f_{az})$|:::| +
-|SIG(9)|conductive heat flow in the X direction ​$(=f_{tx})$|+
-|SIG(10)|conductive heat flow in the Y direction ​$(=f_{ty})$|+
-|SIG(11)|conductive heat flow in the Z direction ​$(=f_{tz})$|+
-|SIG(12)|energy accumulated by heat capacity ​$(=f_{te})$|| +
-|SIG(13)|Water vapour velocity in the X direction $(=f_{yx})$|+
-|SIG(14)|Water vapour velocity in the Y direction $(=f_{yy})$|+
-|SIG(15)|Water vapour velocity in the Z direction $(=f_{yz})$|+
-|SIG(16)|Water vapour stored $(=f_{ye})$|+
-|SIG(17)|dissolved gas advection and diffusion velocity in the X direction |+
-|SIG(18)|dissolved gas advection and diffusion velocity in the Y direction |+
-|SIG(19)|dissolved gas advection and diffusion velocity in the Z direction |+
-|SIG(20)|dissolved gas advection and diffusion velocity stored |+
-|SIG(21)|dissolved gas diffusion velocity in the X direction |+
-|SIG(22)|dissolved gas diffusion velocity in the Y direction |+
-|SIG(23)|dissolved gas diffusion velocity in the Z direction |+
-|SIG(24)|dissolved gas and diffusion velocity stored||+
  
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-= 26 in 2D cases \\ +10 + 5*(Number of Subscale Nodes)\\ 
-= 16 in 3D cases+/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg
 ==== List of state variables ==== ==== List of state variables ====
-|Q(1)|water ​relative permeability $(=k_{rw})$ ​+|Q(1)|Liquid ​water mass at the RVE
-|Q(2)|air relative permeability $(=k_{ra})$ ​+|Q(2)|Pollutant mass at the RVE
-|Q(3)|Soil porosity (= n) +|Q(3)|Gaseous air mass at the RVE
-|Q(4)|Soil saturation degree $(=S_w)$ ​+|Q(4)|Homogenised macroscale porosity
-|Q(5)|Suction $(=p_c = p_a-p_w)$ ​+|Q(5)|Water saturation degree
-|Q(6)|water ​specific mass $(=\rho_w)$ ​+|Q(6)|Homogenised ​water relative permeability
-|Q(7)|air specific mass $(=\rho_a)$ ​+|Q(7)|Homogenised gas relative permeability
-|Q(8)|"Pe number"​ = convective effect / conductive effect \[= \frac{\rho_f . c_f . T . \vec{q}}{\Gamma_{av} . \vec{grad} (T)}\]+|Q(8)|Homogenised macroscale tortuosity
-|Q(9)|Water content ​(=w) | +|Q(9)|Vapour mass at the RVE (unused)| 
-|Q(10)|Vapour specific mass $(=\rho_v)$ ​+|Q(10)|Homogenised succion
-|Q(11)|Vapour pressure $(=p_v)$ | +|Q(11 (i-1)*5)|$X_i$| 
-|Q(12)|Relative humidity ​$(=H_r)$ | +|Q(11 + (i-1)*5 +1)|$Y_i$| 
-|Q(13)|Liquid water mass per unit soil volume | +|Q(11 + (i-1)*5 +2)|$P_{w,i}$| 
-|Q(14)|Dry air mass per unit soil volume | +|Q(11 + (i-1)*5 +3)|$C_i$| 
-|Q(15)|Vapour mass per unit soil volume | +|Q(11 + (i-1)*5 +4)|$P_{g,i}$|
-|Q(16)|Intrinsic permeability | +
-|Q(17)|Gas soil saturation degree ​$(=S_g)$ | +
-|Q(18)|$\alpha ​(H_2, N_2, …)$ partial pressure $(=p_a^g = p^g p_{H_2O}^g = \text{gas pressure-vapour pressure})$ | +
-|Q(19)|Area associated to one integration point | +
-|Q(20)|Dissolved air concentration $=\frac{\rho_{a-d}}{\rho_w ​\rho_{a-d}} = \frac{H_a \rho_a}{\rho_w + H_a \rho_a}$| +
-|Q(21)|$K_{xx}$ (or zero if IANI = 0) +
-|Q(22)|$K_{yy}$ ​(or zero if IANI = 0+
-|Q(23)|$K_{xy}(or zero if IANI = 0)  ​+
-|Q(24)|$\varepsilon_1$ | +
-|Q(25)|$\varepsilon_2$ | +
-|Q(26)|$\alpha(= angle between principal stress and horizontal) ​|+
  
laws/hypofe2.1700815991.txt.gz · Last modified: 2023/11/24 09:53 by arthur