User Tools

Site Tools


laws:hmic

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hmic [2023/11/24 12:03]
gilles
laws:hmic [2023/12/12 16:03] (current)
gilles [Description]
Line 2: Line 2:
 ===== Description ===== ===== Description =====
 2D hydraulic microscopic law for solid elements.\\ 2D hydraulic microscopic law for solid elements.\\
-Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).+Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).\\ \\ 
 + 
 +The law definition and typical values of parameters for clays can be found in Corman (2024)((Corman,​ G. (2024). Hydro-mechanical modelling of gas transport processes in clay host rocks in the context of a nuclear waste repository. PhD thesis, University of Liège. https://​hdl.handle.net/​2268/​307996)).
  
  
Line 62: Line 64:
 = =
 \begin{cases} \begin{cases}
-\frac{S_{r}^{*^2}}{2}(3-S_{r}^{*}), fracture\\ +(1-S_{r}^*)^3, fracture\\ 
-S_{r}^{*^2}, tube+(1-S_{r}^*)^2, tube
 \end{cases} \end{cases}
 \] \]
Line 70: Line 72:
 From Fick's law, the diffusive component of the dissolved air flow respectively reads for a fracture and a tube: From Fick's law, the diffusive component of the dissolved air flow respectively reads for a fracture and a tube:
 \[ \[
-\vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} \omega_a ​= -\vec{I}_v+\vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} ​(\omega_a
 \] \]
  
  
-Où $\omega_a = \rho_a/​\rho_g$ ​est la teneur massique d’air sec dans le mélange gazeux.+where $\omega_a = \rho_a/​\rho_g$.
  
-=== Equation d’état de l’air sec ===+=== Dry gas state equations ​===
  
-  - Viscosité dynamique $\mu_a$ : dépendance avec la température \[\mu_a (T) = \mu_{a,0} - \alpha_a^T \mu_{a0}(T-T_0)\] +  - Density ​$\rho_a$ :\\ //Assumption of classical ideal gas equation of state: \[\rho_a (T, p_a) = \rho_{a,​0}\frac{p_a}{p_{a,​0}}\frac{T_0}{T} \]// 
-  - Masse volumique ​$\rho_a$ :\\ //Hypothèse// ​L’air est considéré comme un gaz parfait. ​\[\rho_a (T, p_a) = \rho_{a,​0}\frac{p_a}{p_{a,​0}}\frac{T_0}{T} \] +  - Perméabilité intrinsèque $k_g$: \\ Depending on the saturation ​degree ​$S_g$ : $k_{r,g} = f(S_g)$ avec $k_{g,​effectif} = k_{g, intrinsic}k_{a,​w}$ 
-  - Perméabilité intrinsèque $k_g$: \\ Dépendance avec le degré de saturation $S_g$ : $k_{r,g} = f(S_g)$ avec $k_{g,​effectif} = k_{g, intrinsic}k_{a,​w}$ +  - Gaseous ​saturation ​degree ​$S_g$: \\ Depending on suction ​$s = p_g - p_w$ \\ $S_g = 1-S_w$ ​
-  - Degré de saturation ​en liquide ​$S_g$: \\ Dépendance avec la succion ​$s = p_g - p_w$ \\ $S_g = 1-S_w$ ​d’où voir partie liquide+
  
-=== Conservation en volume de la chaleur === 
-\[\dot{S_T} + \dot{E}_{H_2O}^{w\rightarrow v}L + div(\vec{V}_T) - Q_T = 0\] 
-Où $S_T$ représente la quantité de chaleur emmagasinée,​ $L$ la chaleur latente de vaporisation,​ $\vec{V}_T$ le flux de chaleur et $Q_T$ une source de chaleur en volume.\\ 
- 
-Cette dernière équation peut être transformée en utilisant l'​équation de bilan de la vapeur d'eau: 
-\[ 
-\dot{S_T} + \dot{S}_vL + div(\vec{V}_T) + div(\vec{V}_v) L - Q_T = 0 
-\] 
- 
-=== Quantité de chaleur emmagasinée par unité de volume === 
-La quantité d'​enthalpie du système est définie comme la somme des contributions de chaque espèce du système: ​ 
-\[ 
-S_T = H_m = \sum_i H_i = \sum_i \theta_i \rho_i c_{p,i} (T-T_0) 
-\] 
-Les contributions de chaque composante à l’enthalpie du système s'​exprime selon : 
-\[ 
-\begin{array}{l} 
- H_w = n.S_{r,w} \rho_w c_{p,w} (T-T_0) \\ 
- H_a = n(1-S_{r,​g})\rho_ac_{p,​a} (T-T_0)\\ 
- H_s = (1-n)\rho_s c_{p,s} (T-T_0)\\ 
- H_v = n(1-S_{r,​g})\rho_v c_{p,v} (T-T_0) 
-\end{array} 
-\] 
-Un dernier terme, lié à la vaporisation de l’eau, contribue également à l'​emmagasinement de chaleur et dépend de la quantité de vapeur et la chaleur latente de vaporisation. 
-\[ 
-H_{Lat} = nS_{r,g} \rho_{v} L 
-\] 
- 
-=== Transfert de la chaleur par unité de volume === 
-\[ 
-\vec{V_T} + \vec{V_v}L = \underbrace{- \Gamma_m \vec{\nabla}T}_{conduction} + \underbrace{\left[c_{p,​w}\rho_w \vec{q}_l + c_{p,​a}(\vec{i}_a + \rho_a \vec{q}_g) + c_{pv}(\vec{i}_v+\rho_v\vec{q}_g)\right](T-T_0)}_{convection} + \underbrace{\left[\vec{i}_v + \rho_v \vec{q}_g\right] L}_{Latente} 
-\] 
- 
-=== Equations d’état === 
- 
-  - $\rho_w, \vec{f_w}, S_w$: Voir partie eau 
-  - $\rho_a, \vec{f_a}, S_a$ : Voir partie air 
-  - Les conductivités thermiques $\Gamma_w,​\Gamma_a$ et $\Gamma_s$ : \[\begin{array}{l}\Gamma_w(T) = \Gamma_{w,​0} + \Gamma_{w,​0} \gamma_w^T (T-T_0)\\ \Gamma_a(T) = \Gamma_{a,​0} + \Gamma_{a,​0} \gamma_a^T (T-T_0)\\ \Gamma_s(T) = \Gamma_{s,​0} + \Gamma_{s,​0} \gamma_s^T (T-T_0) \end{array}\] 
-  - Les chaleurs spécifiques $c_{p,​w},​c_{p,​a}$ et $c_{p,s}$ :​\[\begin{array}{l} c_{p,w}(T) = c_{p,w0} + c_{p,w0} H_w^T (T-T_0) \\ c_{p,a}(T) = c_{p,a0} + c_{p,a0} H_a^T (T-T_0)\\ c_{p,s}(T) = c_{p,s0} + c_{p,s0} H_s^T (T-T_0)\end{array}\] 
  
 ==== Files ==== ==== Files ====
-Prepro: ​LWAVAT.F \\+Prepro: ​LHMIC.F & EHMICA.F \\ 
 +Lagamine: HMIC.F & EHMICB.F \\
 ===== Availability ===== ===== Availability =====
 |Plane stress state| NO | |Plane stress state| NO |
Line 135: Line 98:
 ^ Line 1 (2I5, 60A1)^^ ^ Line 1 (2I5, 60A1)^^
 |IL|Law number| |IL|Law number|
-|ITYPE| ​171 (= 174 in LOI2 for 3D state) ​|+|ITYPE| ​628 |
 |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing|
 ==== Integer parameters ==== ==== Integer parameters ====
-^ Line 1 (18I5) ^^ +^ Line 1 (4I10) ^^ 
-|IANI|= 0, isotropic permeability case| +|NLAWFEM2|Number of constitutive laws at the sub-scale
-|:::| ≠ 0, anisotropic permeability case| +|KFLU|Number of DOF: 1=Pw, 2=Pw+Pg
-|IKW|formulation index for $k_w$| +|IGAS|Type of gas: 0=Air, 1=H2, 2=N23=Ar4=He5=CO26=CH4
-|IKA|formulation index for $k_a$| +|IDIFF|Activation ​of diffusion ​mechanism: 0=No, 1=Yes 
-|ISRW|formulation index for $S_W$| +Line 2 (1G10.0) ^^ 
-|ITHERM|formulation index for $\Gamma_T$| +|FACONV|Units of conversion ​of the REV (it has a size of 1 [-])|
-|IVAP|= 0 if no vapour diffusion in the problem| +
-|:::|= 1 else| +
-|IFORM|= 1  tangent formulation \[ \left\{\begin{array}{l}f_{we} = \dot{M}_w = (\dot{\varepsilon}_v S_w + n S_w\frac{\dot{\rho}_w}{\chi_w} + n \dot{S}_w) \rho_w \\ f_{ae} = \dot{M}_a = (\dot{\varepsilon}_V S_a + n S_a\frac{\dot{p}_a}{p_a} + n \dot{S}_a) \rho_a \end{array}\right. \]| +
-|:::|= 0  secant formulation \[ \left\{\begin{array}{l} f_{we} = \dot{M}_w = (n^BS_w^B\rho_w^B ​n^AS_w^A\rho_w^A)/​\Delta t \\ f_{ae} = \dot{M}_a = (n^BS_a^B\rho_a^B - n^AS_a^A\rho_a^A)/​\Delta t \end{array}\right. \]+
-|ICONV|= 0 if no convectif term in the heat transport problem| +
-|:::|= else| +
-|ITEMOIN|= 0 if analytic matrix (can be used only if IVAP = 0  if no vapour diffusion in the problem)| +
-|:::|= 1 if semi-analytic matrix (can be used in all the problems)| +
-|IKRN|= 1 if Kozeni-Karmann formulation| +
-|:::|= 2, GDR Momas relation $K=f(n)$| +
-|:::|= 3 Coupling permeability-deformation $K=f(\varepsilon_n)$ (only in 2D)+
-|IGAS|= 0 if gas is air| +
-|:::|= 1 if gas is $H_2$| +
-|:::|= 2 if gas is $N_2$| +
-|:::|= 3 if gas is Ar| +
-|:::|= 4 if gas is He| +
-|:::|= 5 if gas is $CO_2$| +
-|IENTH|= ​if we define $\rho$ and $C_p$ for each constituent \[\left\{\begin{array}{l}H_w ​N.S_{r,w} \rho_w c_{p,w} (T-T_0) \\ H_v = n(1-S_{r,​w})\rho_v c_{p,v} (T-T_0)\\ H_a n(1-S_{r,w})\rho_ac_{p,​a} (T-T_0)\\ H_{a-d} = n S_{r,w} H\rho_ac_{p,​a} (T-T_0)\\ H_s = (1-n)\rho_s c_{p,s} (T-T_0) \end{array}\right.\]| +
-|:::|= 1 if we define $\rho C_p$ equivalent for the medium and constant \[H_m = \rho C_p (T-T_0)\]| +
-|:::​|= ​ if we define $\rho C_p$ equivalent for the medium depending on temperature:​ \[\left\{\begin{array}{l} \rho C_p RHOC1\ \text{if }\ T>T_u \\ \rho C_p = RHOC2\ \text{if }\ T<T_f \\ \rho C_p = \frac{RHOC1-RHOC2}{T_u-T_f}(T-T_u) + RHOC1\ \text{if }\ T_f\leq T \leq T_u\\ \end{array} \right.\] \[T_u = CLT3\] \[T_f = CLT4\]| +
-|IANITH|= 0isotropic conductivity case| +
-|:::|1anisotropic conductivity case| +
-|IVISCW|0$\mu_w ​\mu_{w,0}\left( 1-ALPHW0(T-T_0)) \right)$| +
-|:::|1, $\mu_w = 0.6612(T-229)^{-1.562}$| +
-|IXHIW| = 0, constant water compressibility| +
-|:::|= 1, $\chi_w = \chi_w + \frac{H}{p_a}$ ( $p_a$ is partial pressure of air and H is Henry coefficient)+
-|IDIFF|= 0, with diffusion of dissolved air| +
-|:::|≠ 0, divisor (integer becomes real) of diffusion ​coefficient of dissolved air| +
-|ISTRUCT|= 0, constant permeability| +
-|:::|= 1, permeability depends on microstructure evolution| +
-|ICOAL|= ​0, solid conductivity:​ $\Gamma_s ​\Gamma_{s,0}(1+GAMS0(T-T_0))$| +
-|:::|1solid conductivity:​ $\Gamma_s = \Gamma_{s,​0}GAMS0(T-T_0)^3$+
- +
-==== Real parameters: permeabilities definition ==== +
-The permeability $k_f$ is an \underline{intrinsic} permeability ($\left[L^2\right]$) $\boxed{ \begin{array}{l} k_{f, intrinsic} = K_f \frac{\mu_f}{\rho_f g}\\ \left[ L^2 \right] = \left[ LT^{-1} \right] \frac{ \left[ ML^{-1}T^{-1}\right]}{\left[ML^{-3}\right]\left[LT^{-2}\right]} \end{array}}$\\ +
-^If IANI ≠ 0 (4G10.0) - Repeated IANI times^^ +
-|PERME(I)|soil anisotropic int. permeability ($k_f$) in the direction I| +
-|COSX(I)|director cosinus ​of the direction I \\ (in 3d state)| ​  +
-|COSY(I)|:::​| +
-|COSZ(I)|:::​| +
-Permeabilities in different directions can be input ( $I_{max}= 10$ ).The effect ​of these permeabilities will be summed. +
-^If IANI = 0 (1G10.0)^^ +
-|PERME|soil isotropic intrinsic permeability ($k_f$)|+
  
 ==== Real parameters ==== ==== Real parameters ====
 ^ Line 1 (5G10.0) ^^ ^ Line 1 (5G10.0) ^^
-|POROS|soil porosity $(= n)$| +|VISCW0|Liquid ​dynamic viscosity $(=\mu_{w,​0})\ \left[ Pa.s \right]$| 
-|TORTU|soil tortuosity $(=\tau )$| +|RHOW0|Liquid ​density $(=\rho_{w,​0})\ \left[ kg.m^{-3}\right]$| 
-|T0|definition temperature ​ $(=T_0)\ \left[K\right]$| +|UXHIW|Liquid ​compressibility coefficient $(=1/ \chi_{w})\ \left[ Pa^{-1}\right]$| 
-|PW0|definition liquid pression $(=p_{w,​0})\ \left[Pa\right]$| +|PW0|Initial water pressure ​$\left[ ​Pa\right]$| 
-|PA0|definition gaz pression $(=p_{a,​0})\ \left[Pa\right]$| +|T0|Initial temperature ​$\left[ K\right]$| 
-^ Line 2 (7G10.0) ^^ +^ Line (3E10.2,2G10.0) ^^ 
-|VISCW0|liquid ​dynamic viscosity $(=\mu_{w,​0}\ \left[ Pa.s \right]$|  +|VISCA0|Gas dynamic viscosity $(=\mu_{a,​0})\ \left[Pa.s \right]$| 
-|ALPHW0|liquid ​ dynamic viscosity thermal coefficient $(=\alpha_{w}^T)\ \left[K^{-1}\right]$| +|RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$| 
-|RHOW0|liquid ​density $(=\rho_{w,​0})\ \left[ kg.m^{-3}\right]$ +|PMGAS|Gas molar mass $[g/mol]$| 
-|UXHIW0|liquid ​compressibility coefficient $(=1/ \chi_{w})\ \left[ Pa^{-1}\right]$| +|PA0|Initial gas pressure ​$\left[ ​Pa\right]$| 
-|BETAW0|liquid thermal expansion coefficient ​$(=\beta{w}^T\ ​\left[K^{-1}\right]$| +|PHENRY|Henry coefficient $\left[ -\right]$|
-|CONW0|liquid thermal conductivity ​$(=\Gamma_{w,​0})\ ​\left[W.m^{-1}.K^{-1}\right]$| +
-|GAMW0|liquid thermal conductivity coefficient $(=\gamma_{w}^T\ \left[K^{-1}\right]$| +
-^ Line (3G10.0) ^^ +
-|CPW0|liquid specific heat $(=c_{p,w0})\ \left[J.kg^{-1}.K^{-1}\right]$| +
-|HEATW0|liquid specific heat coefficient $(=H_{w}^T)\ \left[K^{-1}\right]$| +
-|EMMAG|storage coefficient $(=E_s)\ \left[ P_a^{-1}\right]$| +
-^ Line 4 (7G10.0) ^^ +
-|VISCA0|gaz dynamic viscosity $(=\mu_{a,​0})\ \left[Pa.s ​\right]$\ +
-|ALPHW0|gaz ​ dynamic viscosity thermal coefficient$(=\alpha_{a}^T)\ \left[K^{-1}\right]$| +
-|RHOA0|gaz density$(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$| +
-|CONA0|gaz thermal conductivity ​$(=\Gamma_{a,​0})\ \left[W.m^{-1}.K^{-1}\right]$| +
-|GAMA0|gaz thermal conductivity coefficient ​$(=\gamma_{a}^T)\ ​\left[K^{-1}\right]$| +
-|CPA0|gaz specific heat $(=c_{p,​a0})\ \left[J.kg^{-1}.K^{-1}\right]$| +
-|HEATA0|gaz specific heat coefficient $(=H_{a}^T)\ ​\left[K^{-1}\right]$+
-^ Line 5 (5G10.0) ^^ +
-|BETAS0|solid thermal expansion coefficient $(=\beta_{s}^T)\ \left[K^{-1}\right]$| +
-|CONS0|solid thermal conduction$(=\Gamma_{s,​0})\ \left[W.m^{-1}.K^{-1}\right]$| +
-|GAMS0|solid conduction coefficient $(=\gamma_{s}^T)\ \left[K^{-1}\right]$| +
-|CPS0|solid specific heat $(=c_{p,​s0})\ \left[J.kg^{-1}. K^{-1}\right]$| +
-|HEATS0|solid specific heat coefficient $(=H_{s}^T)\ \left[ K^{-1}\right]$| +
-^ Line 6 (3G10.0) ^^ +
-|CKW1|1st ​ coefficient of the function $k_{rw}$| +
-|CKW2|2nd coefficient of the function $k_{rw}$| +
-|CKW3|3rd coefficient of the function $k_{rw}$| +
-^ Line 7 (3G10.0) ^^ +
-|CKA1|1st ​ coefficient of the function $k_{ra}$| +
-|CKA2|2nd coefficient of the function $k_{ra}$| +
-|CSR5|5th coefficient of the function $S_w$| +
-^ Line 8 (7G10.0/) ^^ +
-|CSR1|1st ​ coefficient of the function $S_w$| +
-|CSR2|2nd coefficient of the function $S_w$| +
-|CSR3|3rd coefficient of the function $S_w$| +
-|CSR4|4th coefficient of the function $S_w$| +
-|SRES|residual saturation degree $(=S_{res})$| +
-|SRFIELD|field saturation degree $(=S_{r, field})$| +
-|AIREV|air entry value $\left[Pa\right]$| +
-^ Line 9 (7G10.0) ^^ +
-|CLT1|1st ​ coefficient of the function $\Gamma_T$| +
-|CLT2|2nd coefficient of the function $\Gamma_T$| +
-|CLT3|3rd coefficient of the function $\Gamma_T$| +
-|CLT4|4th coefficient of the function $\Gamma_T$| +
-|RHOC|coefficient for enthalpie $\rho C_p$ (if ienth = 1)| +
-|RHOC1|1st coefficient for enthalpie $\rho C_p$ (if ienth = 2)| +
-|RHOC2|2nd coefficient for enthalpie $\rho C_p$ (if ienth = 2)| +
-^ Line 10 (4G10.0) ^^ +
-|KRMIN|Minimum value of $kr$| +
-|HENRY|Henry coefficient| +
-|EXPM|for IKRN=1: $m$ Exponent of Kozeni-Karmann formulation| +
-|:::|for IKRN=3 : A parameter| +
-|EXPN|n Exponent of Kozeni-Karmann formulation| +
-^Line 11 - Only if IANITH ≠ 0 (4G10.0) - Repeat IANITH times^^ +
-|CONDUC(I)|soil anisotropic conductivity in the direction I| +
-|COSX(I)|director cosinus of the direction I \\ (in 3d state)| +
-|COSY(I)|:::​| +
-|COSZ(I)|:::​| +
-|Thermal conductivities in different directions can be input (Imax = 10). The effect of these conductivities will be summed. In that case of anisotropic conductivity,​ conductivities remain constants for each direction: coefficients ITHERM, CLT1, CLT2, CLT3, CT4, CONS0, CONW0, and CONA0 are so not used in that case|| +
-^If IANITH = 0: nothing^^ +
-|Isotropic thermal conductivity is already defined by preceding coefficients ITHERM, CLT1, CLT2, CLT3, CT4, CONS0, CONW0, CONA0 …||+
  
-Following empirical formulations for describing the evolution ​of the relative permeability,​ the thermal conductivity and saturation with the suction are possiblesee [[appendices:​a8|Appendix 8]]. +==== Sub-scale parameters ==== 
-For any suction lower than air entry value (AIREV), the saturation is equal to SRFIELD value. \\  +To be repeated as many time as NLAWFEM2. 
-__Kozeny Karman formulation:__ +^ Line 1 (7I5) ^^ 
-\[K C_0 \frac{n^{EXPN}}{(1-n)^{EXPM}}\] +|ILAW2|No. ​of the sub-scale constitutive law (=1:NLAWFEM2)
-$C_0$ is computed automatically from $C_0 K_0 \frac{(1-n_0)^{EXPM}}{(n_0)^{EXPn}}$ \\ +|ITYPE2|Type of sub-scale law: 1=Fracture ​(manual), 2=Fracture (automatic),​ 3=Tube (manual), 4=Tube (automatic),​ 5=Bridge (manual), 6=Bridge (automatic)| 
-__GDR Momas formulation:​__ +|ISR|Retention curve1=Brooks-Corey for fracture, 2=Brooks-Corey for tube, 3=van Genuchten for fracture, 4=van Genuchten for tube| 
-\[ +|IKW|Water relative permeability curve | 
-\frac{k}{k_0} = 1+EXPM\left[ \phi - \phi_0\right]^{EXPN}\ \text{où}\ EXPM = 2.10^{12}\ \text{et}\ EXPN = 3 +|IKA|Gas relative permeability curve| 
-\]+|INUMEL2|Number of micro-elements with this law| 
 +|ICONST|Constant element opening: 0=No, 1=Yes| 
 +^ Line 2 Retention curve coefficients (4G10.0) ^
 +|PE0|Initial air entry pressure of the micro-element| 
 +|CDF|Exponent parameter| 
 +|SRES|Residual saturation degree $(=S_{res})$| 
 +|SRG0|Initial gas saturation| 
 +|AKRMIN|Minimum value of relative permeability| 
 +|SRFIELD|Field saturation degree ​$(=S_{r, field})$| 
 +|CDF2|Exponent parameter| 
 +|CSR8|8th parameter of ISR| 
 +Line 3 - Fracture law coefficients ​(4G10.0) ^^ 
 +|AKP|Stiffness parameter of the material| 
 +|GAMMA|Exponent parameter| 
 +|DINI|Initial aperture| 
 +|DMAX|Maximum aperture| 
 +Line 3 - Tube law coefficients (3G10.0) ^
 +|DINI|Initial aperture| 
 +|DMAX|Maximum aperture| 
 +|TORT|Tortuosity|
  
-__Coupling permeability-deformation formulation:​__ (only in 2D) 
-\[ 
-K_{ij} = \sum_n K_n^0 (1+A\varepsilon_n^T)^3\beta_{ij} (\alpha_n) 
-\] 
-$\varepsilon_n^T$ tensile deformation \\ 
-$\alpha_n$ crack orientation with horizontal \\ 
-$A$ parameter of the crack 
 ===== Stresses ===== ===== Stresses =====
 ==== Number of stresses ==== ==== Number of stresses ====
-24+28
 ==== Meaning ==== ==== Meaning ====
 __In 2D state :__ __In 2D state :__
-|SIG(1)|liquid velocity in the X direction ​$(=f_{wx})$|+|SIG(1)|$\sigma_x$ (unused)| 
-|SIG(2)|liquid velocity in the Y direction ​$(=f_{wy})$|+|SIG(2)|$\sigma_y$ (unused)| 
-|SIG(3)|liquid velocity stored  ​$(=f_{we})$|| +|SIG(3)|$\sigma_{xy}$ (unused)| 
-|SIG(4)|none|+|SIG(4)|$\sigma_z$ (unused)| 
-|SIG(5)|gas total velocity in the X direction ​$(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion| +|SIG(5)|Homogenised liquid ​flow along $x$ $(=f_{wx})$| 
-|SIG(6)|gas total velocity in the Y direction ​$(=f_{ay})$|:::+|SIG(6)|Homogenised ​liquid ​flow along $y$ $(=f_{wy})$| 
-|SIG(7)|gas total velocity stored $(=f_{ae})$|:::​| +|SIG(7)|Homogenised ​liquid ​flow stored $(=f_{we})$| 
-|SIG(8)|none|:::​| +|SIG(8)|Homogenised ​gas flow along $x$ $(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion| 
-|SIG(9)|conductive heat flow in the X direction ​$(=f_{tx})$|| +|SIG(9)|Homogenised ​gas flow along $y$ $(=f_{ay})$|:::​| 
-|SIG(10)|conductive heat flow in the Y direction ​$(=f_{ty})$|+|SIG(10)|Homogenised ​gas flow stored ​$(=f_{ae})$|:::| 
-|SIG(11)|energy accumulated by heat capacity $(=f_{te})$|| +|SIG(11)|Advection dissolved ​gas flow along $x$ $(=f_{ad,x})$| 
-|SIG(12)|none|| +|SIG(12)|Advection dissolved gas flow along $y$ $(=f_{ad,y})$| 
-|SIG(13)|Water vapour velocity in the X direction $(=f_{vx})$|| +|SIG(13)|Diffusion dissolved gas flow along $x$ $(=f_{add,x})$| 
-|SIG(14)|Water vapour velocity in the Y direction $(=f_{vy})$|| +|SIG(14)|Diffusion dissolved gas flow along $y$ $(=f_{add,y})$| 
-|SIG(15)|Water vapour stored $(=f_{ve})$|| +|SIG(15)|Advection gaseous gas flux along $x$ $(=f_{ag,x})$| 
-|SIG(16)|none|| +|SIG(16)|Advection gaseous gas flux along $y$ $(=f_{ag,y})$| 
-|SIG(17)|dissolved gas advection and diffusion velocity in the X direction|| +|SIG(18)|Unused| 
-|SIG(18)|dissolved gas advection and diffusion velocity in the Y direction|| +|SIG(18)|Unused
-|SIG(19)|dissolved gas advection and diffusion velocity stored|| +|SIG(19)|Unused
-|SIG(20)|none|| +|SIG(20)|Unused
-|SIG(21)|dissolved gas diffusion velocity in the X direction|| +|SIG(21)|Unused
-|SIG(22)|dissolved gas diffusion velocity in the Y direction|| +|SIG(22)|Unused
-|SIG(23)|dissolved gas and diffusion velocity stored|| +|SIG(23)|Unused
-|SIG(24)| none|| +|SIG(24)|Unused
-__In 3D state :__ +|SIG(25)|Unused
-|SIG(1)|liquid ​velocity in the X direction ​$(=f_{wx})$|| +|SIG(26)|Unused
-|SIG(2)|liquid velocity in the Y direction ​$(=f_{wy})$|+|SIG(27)|Unused
-|SIG(3)|liquid ​velocity in the Z direction $(=f_{wz})$|| +|SIG(28)|Unused|
-|SIG(4)|liquid velocity ​stored $(=f_{we})$|+
-|SIG(5)|gas total velocity in the X direction ​$(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion| +
-|SIG(6)|gas total velocity in the Y direction ​$(=f_{ay})$|:::​| +
-|SIG(7)|gas total velocity in the Z direction ​$(=f_{az})$|:::| +
-|SIG(8)|gas total velocity stored ​$(=f_{az})$|:::+
-|SIG(9)|conductive heat flow in the X direction ​$(=f_{tx})$|+
-|SIG(10)|conductive heat flow in the Y direction ​$(=f_{ty})$|+
-|SIG(11)|conductive heat flow in the Z direction ​$(=f_{tz})$|+
-|SIG(12)|energy accumulated by heat capacity ​$(=f_{te})$|+
-|SIG(13)|Water vapour velocity in the X direction ​$(=f_{yx})$|+
-|SIG(14)|Water vapour velocity in the Y direction $(=f_{yy})$|| +
-|SIG(15)|Water vapour velocity in the Z direction $(=f_{yz})$|+
-|SIG(16)|Water vapour stored $(=f_{ye})$|+
-|SIG(17)|dissolved gas advection and diffusion velocity in the X direction |+
-|SIG(18)|dissolved gas advection and diffusion velocity in the Y direction |+
-|SIG(19)|dissolved gas advection and diffusion velocity in the Z direction |+
-|SIG(20)|dissolved gas advection and diffusion velocity stored |+
-|SIG(21)|dissolved gas diffusion velocity in the X direction |+
-|SIG(22)|dissolved gas diffusion velocity in the Y direction |+
-|SIG(23)|dissolved gas diffusion velocity in the Z direction |+
-|SIG(24)|dissolved gas and diffusion velocity stored||+
  
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-26 in 2D cases \\ +=in 2D cases
-= 16 in 3D cases+
 ==== List of state variables ==== ==== List of state variables ====
-|Q(1)|water relative permeability $(=k_{rw})$ ​+|Q(1)|Unused
-|Q(2)|air relative permeability $(=k_{ra})$ ​+|Q(2)|Unused
-|Q(3)|Soil porosity ​(= n) +|Q(3)|Homogenised macro-scale ​porosity| 
-|Q(4)|Soil saturation ​degree $(=S_w)$ ​+|Q(4)|Homogenised macro-scale ​saturation| 
-|Q(5)|Suction $(=p_c = p_a-p_w)$ ​+|Q(5)|Water storage
-|Q(6)|water specific mass $(=\rho_w)$ ​+|Q(6)|Gas storage
-|Q(7)|air specific mass $(=\rho_a)+|Q(7)|Saved fracture aperture of the current step (from 7 to 7+nico)| 
-|Q(8)|"Pe number"​ = convective effect / conductive effect \[= \frac{\rho_f . c_f . T . \vec{q}}{\Gamma_{av} . \vec{grad} (T)}\]+|Q(8)|Unused
-|Q(9)|Water content (=w) +|Q(9)|Unused
-|Q(10)|Vapour specific mass $(=\rho_v)$ ​+|Q(10)|Unused
-|Q(11)|Vapour pressure $(=p_v)$ ​+|Q(11)|Unused
-|Q(12)|Relative humidity $(=H_r)$ | +|Q(12)|Unused|
-|Q(13)|Liquid water mass per unit soil volume | +
-|Q(14)|Dry air mass per unit soil volume | +
-|Q(15)|Vapour mass per unit soil volume | +
-|Q(16)|Intrinsic permeability | +
-|Q(17)|Gas soil saturation degree $(=S_g)$ | +
-|Q(18)|$\alpha (H_2, N_2, …)$ partial pressure $(=p_a^g = p^g - p_{H_2O}^g = \text{gas pressure-vapour pressure})$ | +
-|Q(19)|Area associated to one integration point | +
-|Q(20)|Dissolved air concentration $=\frac{\rho_{a-d}}{\rho_w + \rho_{a-d}} = \frac{H_a \rho_a}{\rho_w + H_a \rho_a}$| +
-|Q(21)|$K_{xx}$ (or zero if IANI = 0) | +
-|Q(22)|$K_{yy}$ (or zero if IANI = 0) | +
-|Q(23)|$K_{xy}$ (or zero if IANI = 0)  | +
-|Q(24)|$\varepsilon_1$ | +
-|Q(25)|$\varepsilon_2$ | +
-|Q(26)|$\alpha$ (= angle between principal stress and horizontal) ​|+
  
laws/hmic.1700823787.txt.gz · Last modified: 2023/11/24 12:03 by gilles