User Tools

Site Tools


laws:evp-nh

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:evp-nh [2019/03/19 14:43]
chantal [Integer parameters]
laws:evp-nh [2020/08/25 15:46] (current)
Line 5: Line 5:
 Project: continuous casting research for ARBED (RW2748)\\ Project: continuous casting research for ARBED (RW2748)\\
 ==== The model ==== ==== The model ====
-Coupled dynamic recrystallisation-thermo mechanical analysis of elasto visco plastic solids undergoing large strains.\\+Coupled dynamic recrystallisation-thermo-mechanical analysis of elasto-visco-plastic solids undergoing large strains.\\
 JAUMANN stress rate is used\\ JAUMANN stress rate is used\\
 __IANA= 2, 3, 5:__\\ __IANA= 2, 3, 5:__\\
-See report RW2748 (1, 8, 17, 24) and intermediate report of April 1998 \\+See intermediate ​report RW2748 (1, 8, 17, 24) and intermediate report of April 1998 \\
 For details on equations used in analytical compliance matrix computation,​ see appendix D of April 1998\\ For details on equations used in analytical compliance matrix computation,​ see appendix D of April 1998\\
 __IANA= 4:__\\ __IANA= 4:__\\
Line 17: Line 17:
 Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4)
 ==== Subroutines ==== ==== Subroutines ====
-In the following table, fill in the file (*.F) and the names of the subroutines used by the law. Generic subroutines such as ‘ANNULD’ (putting a vector to zero) or ‘MST_SOLVE’ (computing the solution to a system of linear equations) do not need to be listed here.+
 ^File^Subroutine^Description^ ^File^Subroutine^Description^
-|XXX.F| XXX|Main subroutine of the law |+|CALMAT.F | CALMAT|Computes material data at temperature T | 
 +|NHIMAT.F |CALSIGY | | 
 +|:::​|MATMSGS2|Used for analytical compliance matrix| 
 +|:::​|MATMSGL2|Used for analytical compliance matrix| 
 +|:::​|MATMSGS|Used for analytical compliance matrix (3D case)| 
 +|:::​|MATMSGL|Used for analytical compliance matrix (3D case)| 
 +|:::​|EIGVECT| Computes eigen vectors| 
 +|:::​|CMATINV| Inverse complex matrix| 
 +|:::​|VGMOYEN |Computes ​the constant velocities gradient matrix | 
 +|CALPNH.F| CALPNH|Computes $K_0, P_1, P_2, P_3, P_4$ at temperature T | 
 +|RECRYDYN.F|RECRYDYN |Dynamic recrystallization computation ​| 
 ===== Availability ===== ===== Availability =====
 |Plane stress state| NO | |Plane stress state| NO |
Line 50: Line 61:
 |E| YOUNG’s elastic modulus at temperature T| |E| YOUNG’s elastic modulus at temperature T|
 |ANU| POISSON’s ratio at temperature T| |ANU| POISSON’s ratio at temperature T|
-|ALPHA| Thermal expansion coefficient (α) at temperature T.  \\ Even if IALG = 1, ALPHA must be introduced at temperature T. \\ In this case, FORMULE ​will be automatically computed |+|ALPHA| Thermal expansion coefficient (α) at temperature T.  \\ Even if IALG = 1, ALPHA must be introduced at temperature T. \\ In this case, $\int_0^T\alpha(T).dT$ ​will be automatically computed | 
 ^ If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10) \\ Note: parameters introduced by increasing temperature order^^ ^ If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10) \\ Note: parameters introduced by increasing temperature order^^
 |T| Temperature| |T| Temperature|
-|K0| See X for formula+|$K_0$| See further
-|P1A ADAPTER+|$P_1$See "​Information about EVP-NH"​
-|P2see 4.4 for more information+|$P_2$| | 
-|P3| | +|$P_3$| | 
-|P4| |+|$P_4$| | 
 ^ If ICHP2 ≠ 2: 2 Lines  (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^ ^ If ICHP2 ≠ 2: 2 Lines  (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^
-|AK0See X for formula+|$AK_0$| | 
-|C1A ADAPTER+|$C_1$See further
-|C2see 4.4 for more information+|$C_2$See "​Information about EVP-NH"​
-|C3| | +|$C_3$| | 
-|C4| | +|$C_4$| | 
-|C5| | +|$C_5$| | 
-|C6| | +|$C_6$| | 
-|P3| (be careful: 0 < P3 < 1)| +|$P_3$| (be careful: 0 < $P_3$ < 1)| 
-|P4| |+|$P_4$| | 
 ^ 1 Line (4G10) ^^ ^ 1 Line (4G10) ^^
 |TQ| Taylor-Quinney’s coefficient. Absolute value between 0 and 1 :\\ < 0: when thermal analysis within a semi-coupled analysis\\ > 0: for other cases (total coupled analysis or mechanical analysis within a semi-coupled analysis)| |TQ| Taylor-Quinney’s coefficient. Absolute value between 0 and 1 :\\ < 0: when thermal analysis within a semi-coupled analysis\\ > 0: for other cases (total coupled analysis or mechanical analysis within a semi-coupled analysis)|
-|PRECVG| precision in VGMOY calculation (3D state only)\\ ≤ 0: set default value = 1.10-5| +|PRECVG| precision in VGMOY calculation (3D state only)\\ ≤ 0: set default value = $1.10^{-5}$
-|PRECELA| precision in elastic computation\\ ≤ 0: set default value = 1.10-4| +|PRECELA| precision in elastic computation\\ ≤ 0: set default value = $1.10^{-4}$
-|EPSINC| increment of deformation for the automatic computation of NINTV\\ ≤ 0: set default value = 1.10-3|+|EPSINC| increment of deformation for the automatic computation of NINTV\\ ≤ 0: set default value = $1.10^{-3}$| 
 ^ If IDYN = 1: 4 Lines  (3I5/​4G10.0/​4G10.0/​2G10.0) ^^ ^ If IDYN = 1: 4 Lines  (3I5/​4G10.0/​4G10.0/​2G10.0) ^^
 |ICOUPL| = 1: the recrystallisation is coupled | |ICOUPL| = 1: the recrystallisation is coupled |
 |:::| = 0: the recrystallisation is uncoupled | |:::| = 0: the recrystallisation is uncoupled |
-|ITYPEPS| = 0: the equations defining the beginning and the end of the recryst. have the form : FORMULE ​+|ITYPEPS| = 0: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1. Q_4^{Q_2} . [LN(Zener)]^{Q_3}$ ​
-|:::| = 1: the equations defining the beginning and the end of the recryst. have the form : FORMULE ​+|:::| = 1: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1.ATAN[Q_3.[LN(Zener)-Q_2]]+ Q_4$ 
-|:::| = 2: the equations defining the beginning and the end of the recryst. have the form : FORMULE ​|+|:::| = 2: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1.[LN(Zener)]^{Q_2}+ Q_3.LN(Zener) + Q_4$ |
 |NSSMAX| used if ICOUPL = 1: Maximum number of sub-structures\\ The precision on the recryst. fraction is 1/NSSMAX | |NSSMAX| used if ICOUPL = 1: Maximum number of sub-structures\\ The precision on the recryst. fraction is 1/NSSMAX |
-|Q1| parameters for the __beginning__ of the recrystallisation: ​εc +|$Q_1$| parameters for the __beginning__ of the recrystallisation: ​$\varepsilon_c$ ​
-|Q2| parameters for the __beginning__ of the recrystallisation: ​εc +|$Q_2$| parameters for the __beginning__ of the recrystallisation: ​$\varepsilon_c$ ​
-|Q3| parameters for the __beginning__ of the recrystallisation: ​εc +|$Q_3$| parameters for the __beginning__ of the recrystallisation: ​$\varepsilon_c$ ​
-|Q4| parameters for the __beginning__ of the recrystallisation: ​εc +|$Q_4$| parameters for the __beginning__ of the recrystallisation: ​$\varepsilon_c$ ​
-|Q1| parameters for the __end__ of the recrystallisation: ​εs +|$Q_1$| parameters for the __end__ of the recrystallisation: ​$\varepsilon_s$ ​
-|Q2| parameters for the __end__ of the recrystallisation: ​εs +|$Q_2$| parameters for the __end__ of the recrystallisation: ​$\varepsilon_s$ ​
-|Q3| parameters for the __end__ of the recrystallisation: ​εs +|$Q_3$| parameters for the __end__ of the recrystallisation: ​$\varepsilon_s$ ​
-|Q4| parameters for the __end__ of the recrystallisation: ​εs +|$Q_4$| parameters for the __end__ of the recrystallisation: ​$\varepsilon_s$ ​
-|ACTIV| Activation energy for Zener computation : FORMULE ​\\ with T the temperature and R the Boltzman gas constant| +|ACTIV| Activation energy for Zener computation : $Z=\dot{\varepsilon}.EXP(\frac{ACTIV}{R.T})$ ​\\ with T the temperature and R the Boltzman gas constant| 
-|EXPO| Exponent for the AVRAMI law : FORMULE ​|+|EXPO| Exponent for the AVRAMI law : $X= 1- EXP[-3.(\frac{\bar{\varepsilon}-\varepsilon_c}{\varepsilon_s-\varepsilon_c})^{expo}]$ ​| 
 __**NOTE:​**__ ISTRA(3) parameter of the execution file:\\ **Units:** \\ = 0:​ analytical compliance matrix used (default value) \\ = 1:​ perturbation method \\ **Tens:** \\ = 0: mean velocities gradient (default value) \\ = 1: initial velocities gradient \\ **Hundreds:​** \\ = 0: yield limit given by intersection between N-H curve and Young’s straight line \\ = 1: yield limit given by K0 (given parameter – see below) \\ __**NOTE:​**__ ISTRA(3) parameter of the execution file:\\ **Units:** \\ = 0:​ analytical compliance matrix used (default value) \\ = 1:​ perturbation method \\ **Tens:** \\ = 0: mean velocities gradient (default value) \\ = 1: initial velocities gradient \\ **Hundreds:​** \\ = 0: yield limit given by intersection between N-H curve and Young’s straight line \\ = 1: yield limit given by K0 (given parameter – see below) \\
 +
 \\ __**Information about EVP-NH:**__ \\ \\ __**Information about EVP-NH:**__ \\
 For the 1D case, we have: \\ For the 1D case, we have: \\
-FORMULE ​\\ +$\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\ 
-The parameters ​K0P1P2P3P4 can be given at several temperatures (ICHP2 = 2) \\ +The parameters ​$K_0P_1P_2P_3P_4$ can be given at several temperatures (ICHP2 = 2) \\ 
-Otherwise:  (ICHP2 ≠ 2) \\ +Otherwise, if ICHP2 ≠ 2: (see the law in section: "​integer parameters"​) \\ 
-Formule 1 \\ +$P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\ 
-Formule 2 \\ +$P_2= f(C_4, C_5, C_6, T)$ \\ 
-Formule 3 \\+$P_3, P_4, K_0= constants$ ​\\
  
  
laws/evp-nh.1553003037.txt.gz · Last modified: 2020/08/25 15:35 (external edit)