User Tools

Site Tools


laws:epgtnphy

EP-GTNPHY

Description

3D elasto-plastic constitutive combining isotropic and kinematic hardening, anisotropic yield locus, nucleation growth and coalescence of voids. Physically-based models. Applied on porous ductile materials.

The model

  • Mixed hardening and plastic anisotropy.
  • $q_2$ is a state variable.
  • Different physically-based nucleation, growth and coalescence of voids.
  • Classical nucleation and coalescence modeling by Tvergaard and Needleman (GTN model).
  • Consistent tangent matrix calculated using the perturbation method.

Files

Prepro: LGUR3.F
Lagamine: GTNB3DPHY.F, GUR3DBF.F

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state NO
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 363
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (8I5)
NINTV Number of sub-steps used to integrate numerically the constitutive equation in a time step
NINTEPS Number of sub-intervals per unit of delta epsilon
Number of sub-steps = MAX(NINTV; NINTEPS*DELTA EPSILON)
MAXIT Maximum number of iterations in the N-R scheme
IKAP = 0 : Tangent matrix by perturbation (through LOAX3D)
= 1 : Tangent matrix by perturbation (calculated within the law)
NTYPHP Type of hardening
= 1 : Swift law : $\sigma_Y = K(\varepsilon_0+\bar{\varepsilon}^p)^n$
= 2 : Voce law : $\sigma_Y = \sigma_0 + K[1-\exp(-n.\bar{\varepsilon}^p)]$
= 3 : Ludwik : $\sigma_Y = \sigma_0 + K(\bar{\varepsilon}^p)^n$
NTYCOA Void nucleation model
= 1 : Classic GTN
= 2 : Bouaziz, Maire approach
= 3 : Landron approach
NTYGRO Void growth model
= 1 : Classic GTN
= 2 : Bouaziz, Maire approach
NTYCOA Void coalescence model
= 1 : Classic GTN
= 2 : Brown and Embury (not ready)
= 3 : Thomason

Real parameters

Line 1 (2G10.0)
E YOUNG's elastic modulus
ANU POISSON's ratio
Line 2 (3G10.0)
CK Coefficient of the hardening law ($K$)
CN Strain hardening exponent ($n$)
CW Hardening coefficient ($\varepsilon_0$ or $\sigma_0$)
Line 3 (2G10.0)
CX First parameter of the kinematic hardening ($C_X.X_{sat}$)
XSAT Second parameter of the kinematic hardening ($C_X$) : \[\dot{\underline{X}} = C_X\left(X_{sat}\;\dot{\underline{\varepsilon}}^p-\underline{X}\;\bar{\dot{\varepsilon}}^p\right)\]
Line 4 (3G10.0)
R0 Lankford coefficient in the direction 0°
R45 Lankford coefficient in the direction 45°
R90 Lankford coefficient in the direction 90°
Line 5 (4G10.0)
QUN Initial damage parameter ($q_1$)
QDEUX Initial damage parameter ($q_2$)
QTR Initial damage parameter ($q_3$)
F0 Initial porosity ($f_0$)
Void nucleation parameters (3G10.0)
If NTYNUC = 1
FNUC Nucleation parameter ($f_N$)
SNUC Nucleation parameter ($S_N$)
ENUC Nucleation parameter ($\varepsilon_N$) 
If NTYNUC = 2
AA0 $A$ : Number of nucleated voids per mm$^3$
EPSN0 $\varepsilon_{N0}$ : Critical strain for pure shear loading
If NTYNUC = 3
BB0 Material parameter ($B$)
NN0 Initial number of voids per unit volume ($N_0$)
SCRITM Critical shear stress ($\sigma_C$)
Void growth parameters (3G10.0)
If NTYGRO = 2 or NTYGRO = 3
RRi0 = $R_0^i$ : Initial mean radius
Void coalescence parameters (3G10.0)
If NTYCOA = 1
FCRIT Coalescence parameter ($f_c$)
FFAIL Coalescence parameter ($f_U$)

Stresses

Number of stresses

6

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{yz}$
SIG(6)$\sigma_{xz}$

State variables

Number of state variables

25

List of state variables

Q(1) = 0 : Current state is elastic 
= 1 : Current state is elasto-plastic
Q(2) Equivalent plastic strain in the matrix $\sigma_Y = K(\varepsilon_0+\varepsilon_m^p)^n$
(not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium)
Q(3)$\rightarrow$Q(8) The six components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$, $\underline{\varepsilon}_{13}^p$, $\underline{\varepsilon}_{23}^p$
Q(9)$\rightarrow$Q(14) The six components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$, $X_{13}$, $X_{23}$
Q(15) $f^*$ : (Effective) void volume fraction
Q(16) $T$ : triaxiality (without backstress)
Q(17) $\omega$ : Lode angle (Nahshon and Hutchinson, 2008) (not used)
Q(18) $\varepsilon^p_{eqa}$ : Equivalent macroscopic plastic strain
Q(19) $q$ : Effective eq. macroscopic stress
Q(20) $p$ : Hydrostatic stress
Q(21) $f$ : Void volume fraction
Q(22) $N$ : Number of nucleated voids
Q(23) $f_N$ : Porosity (Nucleation contribution)
Q(24) $R$ : The updated void radius
Q(25) $\ln(R_T/T_{T0})$ where $R_T$ and $R_{T0}$ are are the current and initial radius of the single equivalent porosity
Q(26) $R_T$ : Radius of the single void cavity at the end of the time increment
Q(27) $q_2$
Q(28) $q_1=1.5\; q_2$
Q(29) $q_3 = q_1^2$

Qtrial : anisotropic equivalent shifted stress with HILL criterion calculation.

laws/epgtnphy.txt · Last modified: 2020/08/25 15:46 (external edit)