User Tools

Site Tools


laws:epcapsol

EP-CAPSOL

Description

CAP MODEL : Elasto-plastic constitutive law for solid elements at constant temperature.

The model

This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains.

Files

Prepro: LCAP.F
Lagamine: CAP2EA.F, CAP3D.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 79
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (10I5)
NINTV > 0 : number of sub-steps used to integrate numerically the constitutive equation in a time step.
= 0 : NINTV will be calculated in the law with DIV = $5.10^{-3}$
ISOL = 0 : use of total stresses in the constitutive law
$\neq$ 0 : use of effective stresses in the constitutive law. See Appendix 8
IELA = 0 : Linear elasticity
> 1 : Non linear elasticity
ILODEF Shape of the yield surface in the deviatoric plane :
= 1 : circle in the deviatoric plane
= 2 : smoothed irregular hexagon in the deviatoric plane
ILODEGNot used : Associated plasticity
ITRACT = 0 : No traction limitation
≠ 0 : Traction stresses limitation
IECPS = 0 : $\psi$ is defined with PSIC and PSIE - Not used
= 1 : $\psi$ is defined with PHMPS - Not used
ICBIFComputation indice of bifurcation criterion
= 0 : non computed
= 1 : computed (plane strain state only
KMETH = 2 : actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value)
IPCONS = 0 Definition of pre-consolidation pressure
≠ 0 Definition of OCR

Real parameters

Line 1 (5G10.0)
E_PAR1 First elastic parameter
E_PAR2 Second elastic parameter
E_PAR3 Third elastic parameter
E_PAR4 Fourth elastic parameter
HARD Hardening parameter
Line 2 (6G10.0)
PCONS0 Preconsolidation pressure (If IPCONS0=0)
OCR Over Consolidation Ratio (If IPCONS0<>0, see section 6.5
AI1MIN Minimum value of $I_\sigma$ for non-linear elasticity
PSIC Coulomb's angle (in degrees) for compressive paths -Not used.
PSIE Coulomb's angle (in degrees) for extensive paths -Not used.
PHMPS Van Eekelen exponent (default value=-0.229) - Not used
Line 3 (6G10.0)
PHIC0 Initial Coulomb’s angle (in degrees) for compressive paths
PHICF Final Coulomb’s angle (in degrees) for compressive paths
BPHIOnly if there is hardening/softening
PHIE0 Initial Coulomb’s angle (in degrees) for extensive paths
PHIEF Final Coulomb’s angle (in degrees) for extensive paths (psi ILODEF = 2)
AN Van Eekelen exponent (default value=-0.229)
Line 4 (4G10.0)
COH0 Initial value of cohesion
COHF Final value of cohesion
BCOH Only if there is hardening/softening
TRACTION
Line 5 (3G10.0)
POROS Initial soil porosity ($n_0$)
RHO Specific mass
DIV Parameter for the computation of NINTV in the law (for NINTV=0 only).

Hardening forms

ITYLA = 2: Volumetric strain hardening
$dp_0$ = ECRO $p_0\varepsilon_v^p$
Sign depedent on the consolidation stress.
Softening is possible

Elastic forms

IELA = 0: Linear elasticity
E_PAR1 = E : Young’s Elastic modulus
E_PAR2 = ANU : Poisson’s ratio
E_PAR3 = not used
E_PAR4 = not used
HARD = ECRO : Hardening parameter

IELA = 1: Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = ANU : Poisson’s ratio
E_PAR3 = not used
E_PAR4 = not used
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 2: Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = G0 : Shear modulus
E_PAR3 = not used
E_PAR4 = not used
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 3: Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = K0 : Minimum value of the bulk modulus
E_PAR3 = G0 : Shear modulus
E_PAR4 = ALPHA2 :
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 4: Non Linear elasticity
E_PAR1 = K0 : Minimum value of the bulk modulus
E_PAR2 = n : n parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD
ECRO=HARD

IELA = 5: Non Linear elasticity
E_PAR1 = $\nu$ : Poisson’s ratio
E_PAR2 = n : n parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD
ECRO=HARD

IPCONS parameter

IPCONS = 0: $p_0 = PCONS0$
IPCONS = 1: $p_0 = \sigma_v . OCR$
IPCONS = 0: $p_0 = p_0(\sigma,\text{cohesion}, \phi) . OCR$

Where $p_0(\sigma,\text{cohesion},\phi) = \left[ \frac{-II_{\widehat{\sigma}}^2}{m^2(I_{\sigma}-\frac{3c}{tg\phi})} - I_{\sigma} \right] / 3$

Stresses

Number of stresses

= 6 : for 3D state
= 4 : for the other cases.

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the other cases :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

= 34 : for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
= 22 : in all the other cases

List of state variables

Q(1) = 1 in plane strain state
circumferential strain rate ($\dot{\varepsilon_{\theta}}$) in axisymmetrical state
Q(2) actualised specific mass
Q(3) = 0 if the current state is elastic
= 1 if the current state is elasto-plastic: PLASOL
= 2 if the current state is elasto-plastic: ELLIPSE
= 3 if the current state is elasto-plastic: TRACTION
= 4 if the current state is elasto-plastic: ELL + PLASOL
= 5 if the current state is elasto-plastic: PLASOL + TRACTION
Q(4) plastic work per unit volume ($W^p$)
Q(5) Actualised value of porosity
Q(6) equivalent strain $n^o$1 $\varepsilon_{eq1} = \int \Delta \dot{\varepsilon}_{eq}\Delta t$
Q(7) Updated value of preconsolidation pressure $p_0$
Q(8) equivalent strain indicator $n^o 1$ (Villote $n^o 1$) $\alpha_1 = (\Delta\dot{\varepsilon}_{eq}\Delta t ) / \varepsilon_{eq1}$
Q(9) X deformation
Q(10) Y deformation
Q(11) Z deformation
Q(12) XY deformation
Q(13) Plastic volumetric strain
Q(14) Plastic equivalent strain
Q(15) Cohesion
Q(16) Frictional angle in compression
Q(17) Frictional angle in extension
Q(18) APEX
Q(19) number of sub-intervals used for the integration
Q(20) Cubic modulus
Q(21) Shear modulus
Q(22)$\rightarrow$ Q(34) reserved for bifurcation
laws/epcapsol.txt · Last modified: 2020/08/25 15:46 (external edit)