User Tools

Site Tools


laws:endc

ENDC

Description

Endochronic (internal time) model coupled with damage for elasto-plastic cyclic loading analysis in plane state at constant temperature.

The model

This law is used for mechanical analysis of 2-D continuum element undergone large deformation by using endochronic (internal time) theory coupled with damage model for elasto-plastic cyclic loading.

Files

Prepro: LENDC.F
Lagamine: ENDC2D.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 85
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
NINTV Number of sub-steps used to integrate numerically the constitutive equation in a time step
NPOINT The function form
= 1 : Linear expansion (for 2-terms kernal function)
= 2 : Saturated expansion (for 2-terms kernal function)
\[\rho(\zeta)=\rho_0+\rho_1(\zeta)\]\[\rho_1(\zeta)=\frac{E_1}{E}\;e^{-\alpha_1.\zeta}+\frac{E_2}{E}\]
= 3 : Linear expansion (for 3-terms kernal function)
= 4 : Saturated expansion (for 3-terms kernal function)
\[\rho(\zeta)=\rho_0+\rho_1(\zeta)\]\[\rho_1(\zeta)=\frac{E_1}{E}\;e^{-\alpha_1.\zeta}+\frac{E_2}{E}+\frac{E_3}{E}\;e^{-\alpha_3.\zeta}\]

Real parameters

Line 1 (7G10.0)
E YOUNG's elastic modulus
$\nu$ POISSON's ratio
$\sigma_o$ Initial yield limit
$\sigma_f$ Yield limit at finite strain
$E_{to}$ Initial tangent modulus
$E_{tf}$ Tangent modulus at finite strain
Thickness = 1.0 (by default)
$\varepsilon_f$ Equivalent plastic strain at the unloading point
Line 2 (7G10.0)
$2\sigma_y$ Stress drop during the elastic unloading
= 2$\sigma_0$ at initial yielding point
$A_o$ Ratio of saturated and initial stress
Only for the choice of saturated expansion form, meaning NPOINT = 2 or 4)
$\sigma_{po}$ Yield limit for three-terms kernal function
$E_{tpo}$ Yield limit for three-terms kernal function
Dam Parameter of damage model
Edam Parameter of damage model
Rdam Parameter of damage model \[D(\zeta)=Dam\;e^{-Edam\;.\;\zeta\;.\;Rdam}\]

Stresses

Number of stresses

4 for plane state

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

21

List of state variables

Q(1) = 1 : Plane strain
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) Current yield limit in tension
Q(3) = 0 : Current stress state is elastic
= 1 : Current stress state is plastic
Q(4) = 0 : Loading occurs
= 1 : Neutral loading occurs
Q(5) Equivalent plastic strain ($\bar{\varepsilon}^p$)
Q(6) Internal time $\zeta$
Q(7) Current kernal function's value $f_n$
Q(8) Current derived kernal function's value $df_n$
Q(9)$\rightarrow$Q(20) Current back stresses
Q(21) Current damage coefficient

laws/endc.txt · Last modified: 2020/08/25 15:46 (external edit)