This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
elements:ress [2019/07/19 11:21] helene [Input file] |
elements:ress [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 3: | Line 3: | ||
===== Description ===== | ===== Description ===== | ||
- | {{ :elements:blz3d.png?300|}} | + | |
- | The RESS formulation employs just the | + | The RESS formulation employs just the Enhanced Assumed Strain (EAS) technique with a reduced integration scheme. |
- | Enhanced Assumed Strain (EAS) technique with a reduced integration scheme. These elements have special integration schemes dedicated to analyze problems involving non-linear through-thickness distribution without requiring many element layers. \\ | + | {{ :elements:blz3d.png?300|}} These elements have special integration schemes dedicated to analyze problems involving non-linear through-thickness distribution without requiring many element layers. \\ |
Implemented by: J.I. Velosa de Sena, December 2010 | Implemented by: J.I. Velosa de Sena, December 2010 | ||
Line 15: | Line 15: | ||
===== Input file ===== | ===== Input file ===== | ||
- | ^Sous-titre (A5)^^ | + | ^Title (A5)^^ |
|TITLE | 'RESS3' en colonnes 1 à 5| | |TITLE | 'RESS3' en colonnes 1 à 5| | ||
- | ^Contrôle (4I5)^^ | + | ^Control data (4I5)^^ |
- | |NELEM | Nombre d'éléments | | + | |NELEM|Number of elements| |
- | |NEAS | Nombre de modes EAS (Enhanced Assumed Strain) (seule la valeur 1 est possible) | | + | |NEAS|Number of EAS modes (Enhanced Assumed Strain) - only available value = 1| |
- | |ILOAX | Calcul avec les axes locaux \\ ☛ Objectivité vérifiée \\ ☛ Rotation des axes matériau | | + | |ILOAX |= 0 for global axis computation \\ ☛ Objectivity must be verified in the material law (with Jaumann correction)\\ ☛ No rotation of material axes| |
- | |::: | Unités : \\ = 1 pour rotations incorporées dans la matrice tangente locale (non disponible :!:) \\ = 2 pour appliquer la rotation finale à la matrice tangente locale \\ = 3 pour appliquer la rotation initiale à la matrice tangente locale \\ = 4 pour calculer la matrice tangente par perturbations globales \\ = 5-9 non définis | | + | |:::|< 0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| |
- | |::: | Dizaines (uniquement pour ILOAX > 0) : \\ = 0 pour axes locaux e1, e2, e3 initialement parallèles aux axes globaux ex, ey, ez. \\ = 1 pour axes locaux initiaux e1, e2 entrés sur une carte séparée (et e3 = e1 ∧ e2) => lecture d’une carte 2.5. \\ = 2 pour axes locaux e1, e2 initialement dans le plan ex, ey et formant un angle theta avec ex, ey (et e3 = e1 ∧ e2 = ez) => lecture d’une carte 2.6. \\ = 3 idem cas 1 mais avec axes locaux initiaux différents pour chaque élément => lecture d’une carte 2.5 pour chaque élément. \\ = 4 idem cas 2 mais avec axes locaux initiaux différents pour chaque élément => lecture d’une carte 2.6 pour chaque élément.\\ = 5-9 non définis| | + | |:::|> 0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes| |
- | |NPTH | Nombre de points d’intégration sur l’épaisseur (dans la direction ζ ) de l’élément (2<=NPTH<=10). Le nombre de points d’intégration dans le plan ζ-η est égal à 1. | | + | |:::|units: \\ = 1 for rotations incorporated in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method| |
- | ^Liste des modes EAS (14I5)^^ | + | |:::|tens (only for ILOAX>0): \\ = 0 for local axes e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub> initially parallel to global axes e<sub>x</sub>, e<sub>y</sub>, e<sub>z</sub> \\ = 1 for local axes e<sub>1</sub>, e<sub>2</sub> given (and e<sub>3</sub>=e<sub>1</sub>∧e<sub>2</sub>) \\ = 2 for local axes e<sub>1</sub>, e<sub>2</sub> initially in the plane (e<sub>x</sub>, e<sub>y</sub>) forming an angle θ with e<sub>x</sub>, e<sub>y</sub> (and e<sub>3</sub>=e<sub>1</sub>∧e<sub>2</sub>)\\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| |
- | | |EAS (Liste 1) = Si NEAS = 1 | | + | |NPTH|Number of integration points on the width (in the ζ direction) of the element (NPTH ∈ [2,10]). The number of integration points in the ξ-η plane is equal to 4.| |
- | ^Définitions des éléments (I5/8I5)^^ | + | ^List of EAS modes (14I5)^^ |
- | |LMATE | Numéro du matériau | | + | |EAS(1)|if NEAS = 1| |
- | |NODES(8) | Liste des noeuds | | + | ^Definition of the elements (I5/8I5)^^ |
- | ===== Résultats ===== | + | |LMATE|Material law| |
+ | |NODES(8)|List of nodes| | ||
+ | ===== Results ===== | ||
+ | Cauchy stresses in global axes $\sigma_x,\sigma_y,\sigma_z,\sigma_{xy},\sigma_{xz},\sigma_{yz}$ | ||
- | | |Contraintes de Cauchy en axes globaux dans l'ordre : $\sigma_{x}$ , $\sigma_{y}$ , $\sigma_{z}$ , $\sigma_{xy}$ , $\sigma_{xz}$ , $\sigma_{yz}$ \\ :!: Ordre des points d'intégration : \\ - On part toujours des coordonnées négatives, on varie seulement le ζ \\ __Exemple pour 3 PI (NPTH=3)__ \\ 1er ξ = 0 η = 0 ζ = -0.774 \\ 2ème ξ = 0 η = 0 ζ = 0 \\ 3ème ξ = 0 η = 0 ζ = +0.774 | | + | ===== Order of the integration points ===== |
+ | Starting from negative coordinates, one varies: \\ | ||
+ | - the ξ | ||
+ | - the η | ||
+ | - the ζ | ||
+ | __Exemple for 3 IP (NPTH=3)__ \\ | ||
+ | - ξ = 0 η = 0 ζ = -0.774 | ||
+ | - ξ = 0 η = 0 ζ = 0 | ||
+ | - ξ = 0 η = 0 ζ = +0.774 |