This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
elements:plxls [2019/06/21 14:45] helene [Input file] |
elements:plxls [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== PLXLS ====== | ====== PLXLS ====== | ||
- | |||
- | ---- | ||
Line 10: | Line 8: | ||
The element is defined by 3, 4, 6, or 8 nodes (see Input file).\\ | The element is defined by 3, 4, 6, or 8 nodes (see Input file).\\ | ||
For the generalised plane state, 8 nodes of the plane must be defined; the ninth is automatically the last one of the NODES section. \\ | For the generalised plane state, 8 nodes of the plane must be defined; the ninth is automatically the last one of the NODES section. \\ | ||
- | {{ :elements:plxls.png?300|}} | + | |
The 4 nodes elements are not of very good quality: | The 4 nodes elements are not of very good quality: | ||
* With 1 integration point, hourglass modes may appear | * With 1 integration point, hourglass modes may appear | ||
* With 4 integration points, locking (shear or volumetric) can occur. | * With 4 integration points, locking (shear or volumetric) can occur. | ||
+ | {{ :elements:plxls.png?350|}} | ||
Element type: 9 \\ | Element type: 9 \\ | ||
Implemented by: J.P. Radu & J.D. Barnichon (1996) | Implemented by: J.P. Radu & J.D. Barnichon (1996) | ||
Line 26: | Line 24: | ||
===== Input file ===== | ===== Input file ===== | ||
- | === Title === | + | ==== 1 - Title ==== |
^(A5)^^ | ^(A5)^^ | ||
|TITLE|"PLXLS" in columns 1 to 5| | |TITLE|"PLXLS" in columns 1 to 5| | ||
- | === Control === | + | ==== 2 - Control ==== |
^ (3I5) ^^ | ^ (3I5) ^^ | ||
|NELEM| Number of elements | | |NELEM| Number of elements | | ||
Line 39: | Line 37: | ||
|:::| 3 or 4 if residual stresses in cylinder| | |:::| 3 or 4 if residual stresses in cylinder| | ||
- | === Density (for dynamic analysis) - Only if ISPMAS = 1 === | + | ==== 3 - Density (dynamic analysis) ==== |
+ | __Only if ISPMAS = 1__ | ||
^(1G10.0)^^ | ^(1G10.0)^^ | ||
|SPEMAS|Density| | |SPEMAS|Density| | ||
- | === Initial stresses - Only if INSIG > 0 === | + | ==== 4 - Initial stresses ==== |
- | + | __Only if INSIG > 0__ | |
- | == If INSIG = 1 or 2 == | + | === Case 1: INSIG = 1 or 2 === |
If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$ \\ If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,0)$ | If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$ \\ If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,0)$ | ||
Line 54: | Line 53: | ||
|AK0Z|$k_0$ ratio $\sigma_z/\sigma_y$ (if AK0Z=0, AK0Z=AK0X)| | |AK0Z|$k_0$ ratio $\sigma_z/\sigma_y$ (if AK0Z=0, AK0Z=AK0X)| | ||
- | === Definition of the elements === | + | === Case 2: INSIG = 3 or 4 === |
+ | Generally, the radial stress $\sigma_r$ is assumed to be equal to zero. \\ | ||
+ | The longitudinal and circumferencial stresses, $\sigma_L$ & $\sigma_T$, are the same and given, for instance, by the following graph as a function of the depth/radius ratio: \\ | ||
+ | {{ :elements:plxls_resstress.png |}} | ||
+ | ^(6G10.0)^^ | ||
+ | |XC|X coordinate of the axis| | ||
+ | |YC|Y coordinate of the axis| | ||
+ | |R1 |radius of the cylinder| | ||
+ | |R2|radius corresponding to the maximum of tensile stress (point 2)| | ||
+ | |SIGC|maximum compression (observed on the external face of the cylinder) \\ :!: must be NEGATIVE| | ||
+ | |SIGT |maximum tensile stress (point 2)| | ||
+ | The following values are computed automatically: | ||
+ | |R3| radius corresponding to the point 3 \\ = R2 – ( R1 – R2 )| | ||
+ | |SIGR3 | stress corresponding to the point 3 \\ = ½ ( SIGT + SIGC )| | ||
+ | The stress on the axis is equal to zero. \\ | ||
+ | At each integration point, the initial stress SIGRES is computed according to the radius from this integration point to the center of the cylinder. \\ | ||
+ | In plane strain state (IANA=2) and generalised plane strain state (IANA=5), the stresses are the following ones: \\ | ||
+ | * SIGMA(1,IPI) = $\sigma_x = \sigma_1 . cos² \alpha + \sigma_2 . sin² \alpha$ \\ | ||
+ | * SIGMA(2,IPI) = $\sigma_y = \sigma_1 . sin² \alpha + \sigma_2 . cos² \alpha$ \\ | ||
+ | * SIGMA(3,IPI) = $\tau = ½ (\sigma_2-\sigma_1) . sin 2\alpha$ \\ | ||
+ | * SIGMA(4,IPI) = $\sigma_L$ = SIGRES \\ | ||
+ | |||
+ | where $\alpha$ is the angle between $\vec{r}$ and axis X and $\sigma_1$ & $\sigma_2$ the principal stresses in the plane (r,θ). In this case, $\sigma_1 = \sigma_{circ}$ = SIGRES and $\sigma_2 = \sigma_{rad}$ = ZERO. \\ | ||
+ | In axisymmetric state (IANA=3): | ||
+ | * SIGMA(1,IPI) = $\sigma_r$ = ZERO | ||
+ | * SIGMA(2,IPI) = $\sigma_T$ = SIGRES | ||
+ | * SIGMA(3,IPI) = $\tau$ = ZERO | ||
+ | * SIGMA(4,IPI) = $\sigma_L$ = SIGRES | ||
+ | |||
+ | ==== 5 - Definition of the elements ==== | ||
^ (3I5/8I5) ^^ | ^ (3I5/8I5) ^^ |