User Tools

Site Tools


elements:plxls

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
elements:plxls [2019/06/21 14:45]
helene [Input file]
elements:plxls [2020/08/25 15:46] (current)
Line 1: Line 1:
 ====== PLXLS ====== ====== PLXLS ======
- 
----- 
  
  
Line 10: Line 8:
 The element is defined by 3, 4, 6, or 8 nodes (see Input file).\\ The element is defined by 3, 4, 6, or 8 nodes (see Input file).\\
 For the generalised plane state, 8 nodes of the plane must be defined; the ninth is automatically the last one of the NODES section. \\ For the generalised plane state, 8 nodes of the plane must be defined; the ninth is automatically the last one of the NODES section. \\
-{{ :​elements:​plxls.png?​300|}}+
 The 4 nodes elements are not of very good quality: ​ The 4 nodes elements are not of very good quality: ​
   * With 1 integration point, hourglass modes may appear   * With 1 integration point, hourglass modes may appear
   * With 4 integration points, locking (shear or volumetric) can occur.   * With 4 integration points, locking (shear or volumetric) can occur.
 +{{ :​elements:​plxls.png?​350|}}
 Element type: 9 \\ Element type: 9 \\
 Implemented by: J.P. Radu & J.D. Barnichon (1996) Implemented by: J.P. Radu & J.D. Barnichon (1996)
Line 26: Line 24:
 ===== Input file ===== ===== Input file =====
  
-=== Title ===+==== 1 - Title ====
 ^(A5)^^ ^(A5)^^
 |TITLE|"​PLXLS"​ in columns 1 to 5| |TITLE|"​PLXLS"​ in columns 1 to 5|
  
-=== Control ===+==== 2 - Control ​====
 ^ (3I5) ^^ ^ (3I5) ^^
 |NELEM| Number of elements | |NELEM| Number of elements |
Line 39: Line 37:
 |:::| 3 or 4 if residual stresses in cylinder| |:::| 3 or 4 if residual stresses in cylinder|
  
-=== Density (for dynamic analysis) ​- Only if ISPMAS ​===+==== 3 - Density (dynamic analysis) ==== 
 +__Only if ISPMAS = 1__
 ^(1G10.0)^^ ^(1G10.0)^^
 |SPEMAS|Density| |SPEMAS|Density|
  
-=== Initial stresses ​- Only if INSIG > 0 === +==== 4 - Initial stresses ​ ==== 
- +__Only if INSIG > 0__ 
-== If INSIG = 1 or 2 ==+=== Case 1: INSIG = 1 or 2 ===
  
 If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$ \\ If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,​0)$ If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$ \\ If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,​0)$
Line 54: Line 53:
 |AK0Z|$k_0$ ratio $\sigma_z/​\sigma_y$ (if AK0Z=0, AK0Z=AK0X)| |AK0Z|$k_0$ ratio $\sigma_z/​\sigma_y$ (if AK0Z=0, AK0Z=AK0X)|
  
-=== Definition of the elements ===+=== Case 2: INSIG = 3 or 4 === 
 +Generally, the radial stress $\sigma_r$ is assumed to be equal to zero. \\ 
 +The longitudinal and circumferencial stresses, $\sigma_L$ & $\sigma_T$, are the same and given, for instance, by the following graph as a function of the depth/​radius ratio: \\ 
 +{{  :​elements:​plxls_resstress.png ​ |}} 
 +^(6G10.0)^^ 
 +|XC|X coordinate of the axis| 
 +|YC|Y coordinate of the axis| 
 +|R1 |radius of the cylinder| 
 +|R2|radius corresponding to the maximum of tensile stress (point 2)| 
 +|SIGC|maximum compression (observed on the external face of the cylinder) \\ :!: must be NEGATIVE| 
 +|SIGT |maximum tensile stress (point 2)| 
 +The following values are computed automatically:​ 
 +|R3| radius corresponding to the point 3 \\ = R2 – ( R1 – R2 )| 
 +|SIGR3 | stress corresponding to the point 3 \\ = ½ ( SIGT + SIGC )| 
 +The stress on the axis is equal to zero. \\ 
 +At each integration point, the initial stress SIGRES is computed according to the radius from this integration point to the center of the cylinder. \\ 
 +In plane strain state (IANA=2) and generalised plane strain state (IANA=5), the stresses are the following ones: \\ 
 +  * SIGMA(1,​IPI) = $\sigma_x = \sigma_1 . cos² \alpha + \sigma_2 . sin² \alpha$ \\ 
 +  * SIGMA(2,​IPI) = $\sigma_y = \sigma_1 . sin² \alpha + \sigma_2 . cos² \alpha$ \\ 
 +  * SIGMA(3,​IPI) = $\tau = ½ (\sigma_2-\sigma_1) . sin 2\alpha$ \\ 
 +  * SIGMA(4,​IPI) = $\sigma_L$ = SIGRES \\ 
 + 
 +where $\alpha$ is the angle between $\vec{r}$ and axis X and $\sigma_1$ & $\sigma_2$ the principal stresses in the plane (r,θ). In this case, $\sigma_1 = \sigma_{circ}$ = SIGRES and $\sigma_2 = \sigma_{rad}$ = ZERO. \\ 
 +In axisymmetric state (IANA=3): 
 +  * SIGMA(1,​IPI) = $\sigma_r$ = ZERO 
 +  * SIGMA(2,​IPI) = $\sigma_T$ = SIGRES 
 +  * SIGMA(3,​IPI) = $\tau$ = ZERO 
 +  * SIGMA(4,​IPI) = $\sigma_L$ = SIGRES 
 + 
 +==== 5 - Definition of the elements ​====
  
 ^ (3I5/8I5) ^^ ^ (3I5/8I5) ^^
elements/plxls.1561121124.txt.gz · Last modified: 2020/08/25 15:34 (external edit)