User Tools

Site Tools


elements:plxls

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
elements:plxls [2019/03/14 16:56]
helene
elements:plxls [2020/08/25 15:46] (current)
Line 6: Line 6:
 Plane state or axisymmetrical element \\ Plane state or axisymmetrical element \\
 For the axisymmetrical element, the axis of symmetry must be the Y axis. \\ For the axisymmetrical element, the axis of symmetry must be the Y axis. \\
-The element is defined by 3, 4, 6, or 8 nodes (see Input file)+The element is defined by 3, 4, 6, or 8 nodes (see Input file).\\ 
 +For the generalised plane state, 8 nodes of the plane must be defined; the ninth is automatically the last one of the NODES section. \\ 
 + 
 +The 4 nodes elements are not of very good quality:  
 +  * With 1 integration point, hourglass modes may appear 
 +  * With 4 integration points, locking (shear or volumetric) can occur. 
 +{{ :​elements:​plxls.png?​350|}}
 Element type: 9 \\ Element type: 9 \\
-Implemented by: ???+Implemented by: J.P. Radu & J.D. Barnichon (1996) 
  
-{{ :​elements:​plxls.png?​300|}} 
  
 ==== Files ==== ==== Files ====
-Prepro: ​XXX.F \\+Prepro: ​PLXLSA.F \\
 Lagamine: PLXLSB.F Lagamine: PLXLSB.F
  
 ===== Input file ===== ===== Input file =====
  
-TITLE (A5)^^+==== 1 - Title ==== 
 +^(A5)^^
 |TITLE|"​PLXLS"​ in columns 1 to 5| |TITLE|"​PLXLS"​ in columns 1 to 5|
-Control (3I5) ^^+ 
 +==== 2 - Control ​==== 
 +(3I5) ^^
 |NELEM| Number of elements | |NELEM| Number of elements |
 |ISPMAS|0 = nothing| |ISPMAS|0 = nothing|
Line 26: Line 35:
 |INSIG| 0 if no initial stresses| |INSIG| 0 if no initial stresses|
 |:::| 1 or 2 if initial stresses| |:::| 1 or 2 if initial stresses|
-Density (for dynamic analysis) (1G10.0) ​\\ Only if ISPMAS = 1^^+|:::| 3 or 4 if residual stresses in cylinder| 
 + 
 +==== 3 - Density (dynamic analysis) ​==== 
 +__Only if ISPMAS = 1__ 
 +^(1G10.0)^^
 |SPEMAS|Density| |SPEMAS|Density|
-Initial stresses ​(4G10.0) ^^ + 
-|If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$ \\ If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,​0)$|| +==== 4 - Initial stresses ​ ​==== 
 +__Only if INSIG > 0__ 
 +=== Case 1: INSIG = 1 or 2 === 
 + 
 +If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$ \\ If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,​0)$ 
 +^ (4G10.0)^^
 |SIGY0| $\sigma_{y0}$ effective stress $\sigma_y$ at the axes origin| |SIGY0| $\sigma_{y0}$ effective stress $\sigma_y$ at the axes origin|
 |DSIGY|Effective stress gradient along Y axis| |DSIGY|Effective stress gradient along Y axis|
 |AK0X|$k_0$ ratio $\sigma_x/​\sigma_y$| |AK0X|$k_0$ ratio $\sigma_x/​\sigma_y$|
 |AK0Z|$k_0$ ratio $\sigma_z/​\sigma_y$ (if AK0Z=0, AK0Z=AK0X)| |AK0Z|$k_0$ ratio $\sigma_z/​\sigma_y$ (if AK0Z=0, AK0Z=AK0X)|
-===== Results ===== 
  
 +=== Case 2: INSIG = 3 or 4 ===
 +Generally, the radial stress $\sigma_r$ is assumed to be equal to zero. \\
 +The longitudinal and circumferencial stresses, $\sigma_L$ & $\sigma_T$, are the same and given, for instance, by the following graph as a function of the depth/​radius ratio: \\
 +{{  :​elements:​plxls_resstress.png ​ |}}
 +^(6G10.0)^^
 +|XC|X coordinate of the axis|
 +|YC|Y coordinate of the axis|
 +|R1 |radius of the cylinder|
 +|R2|radius corresponding to the maximum of tensile stress (point 2)|
 +|SIGC|maximum compression (observed on the external face of the cylinder) \\ :!: must be NEGATIVE|
 +|SIGT |maximum tensile stress (point 2)|
 +The following values are computed automatically:​
 +|R3| radius corresponding to the point 3 \\ = R2 – ( R1 – R2 )|
 +|SIGR3 | stress corresponding to the point 3 \\ = ½ ( SIGT + SIGC )|
 +The stress on the axis is equal to zero. \\
 +At each integration point, the initial stress SIGRES is computed according to the radius from this integration point to the center of the cylinder. \\
 +In plane strain state (IANA=2) and generalised plane strain state (IANA=5), the stresses are the following ones: \\
 +  * SIGMA(1,​IPI) = $\sigma_x = \sigma_1 . cos² \alpha + \sigma_2 . sin² \alpha$ \\
 +  * SIGMA(2,​IPI) = $\sigma_y = \sigma_1 . sin² \alpha + \sigma_2 . cos² \alpha$ \\
 +  * SIGMA(3,​IPI) = $\tau = ½ (\sigma_2-\sigma_1) . sin 2\alpha$ \\
 +  * SIGMA(4,​IPI) = $\sigma_L$ = SIGRES \\
 +
 +where $\alpha$ is the angle between $\vec{r}$ and axis X and $\sigma_1$ & $\sigma_2$ the principal stresses in the plane (r,θ). In this case, $\sigma_1 = \sigma_{circ}$ = SIGRES and $\sigma_2 = \sigma_{rad}$ = ZERO. \\
 +In axisymmetric state (IANA=3):
 +  * SIGMA(1,​IPI) = $\sigma_r$ = ZERO
 +  * SIGMA(2,​IPI) = $\sigma_T$ = SIGRES
 +  * SIGMA(3,​IPI) = $\tau$ = ZERO
 +  * SIGMA(4,​IPI) = $\sigma_L$ = SIGRES
 +
 +==== 5 - Definition of the elements ====
 +
 +^ (3I5/8I5) ^^
 +|NNODE| Number of nodes: 3, 4, 6, or 8|
 +|NINTE| Number of integration points: 1, 3, 4, 7, or 9|
 +|LMATE| Material |
 +|NODES(NNODE)| List of nodes|
 +
 +===== Results =====
 +The mechanical Cauchy stresses are ordered as: $\sigma_x, \sigma_y, \tau_{xy}, \sigma_z$. These stresses are expressed in the global axis system.
 + 
elements/plxls.1552578978.txt.gz · Last modified: 2020/08/25 15:34 (external edit)