This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
elements:blz3t [2019/04/03 18:03] laurent |
elements:blz3t [2021/12/17 16:37] (current) laurent |
||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== BLZ3T ====== | + | ====== BLZ3T/BWD3T ====== |
===== Description ===== | ===== Description ===== | ||
- | {{ :elements:blz3d.png?300|}} | ||
- | 8 node large strain volumetric element with hourglass and locking control for thermo-mechanical analysis. \\ | ||
- | Implemented by: XXXX Zhu Yongyi, January 1992 | + | 8 node large strain volumetric element with hourglass and locking control for thermo-mechanical analysis. \\ |
- | Improved by: Lihong Zhang, 200? (BWD3T version) | + | {{ :elements:blz3d.png?300|}} \\ |
+ | Implemented by: Zhu Yongyi, December 1991 \\ \\ | ||
+ | Improved by: Lihong Zhang, May 2005 (BWD3T version) | ||
Type: 222 | Type: 222 | ||
- | Prepro: BLZ3TA.F XXXXX Check\\ | + | Prepro: BLZ3TA.F \\ |
Lagamine: BLZ3TB.F, BWD3TB.F\\ | Lagamine: BLZ3TB.F, BWD3TB.F\\ | ||
Line 19: | Line 19: | ||
^CONTROL (5I5)^^ | ^CONTROL (5I5)^^ | ||
|NELEM | Number of elements | | |NELEM | Number of elements | | ||
- | |INDPP |=0 if no weight | | + | |INDPP |= 0 if no weight | |
- | |::: |=1 if weight taken into account | | + | |::: |= 1 if weight taken into account | |
- | |INSIG| = 0 initial stresses cannot be used.| | + | |INSIG |= 0 no initial stresses| |
- | |INSHE |=0 for automatic calculation of shear locking parameter| | + | |::: |= 1 initial stresses computed from ferrostatic pressure (see below) | |
- | |::: |=1 if shear coefficient taken into account| | + | |INSHE |= 0 for automatic calculation of shear locking parameter| |
+ | |::: |= 1 if shear coefficient taken into account (see below)| | ||
|::: |=-1 for use of element BWD3T (only 1 integration point)| | |::: |=-1 for use of element BWD3T (only 1 integration point)| | ||
- | |ILOAX |=0 for global axis computation \\ ☛ Objectivity must be verified in the material law (Jaumann correction) \\ ☛ No rotation of material axes| | + | |ILOAX |= 0 for global axis computation \\ ☛ Objectivity must be verified in the material law (Jaumann correction) \\ ☛ No rotation of material axes| |
- | |:::|<0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| | + | |:::|< 0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| |
- | |:::|>0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes| | + | |:::|> 0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes| |
|:::|units: \\ = 1 for rotations included in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method| | |:::|units: \\ = 1 for rotations included in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method| | ||
|:::|tens (only for ILOAX>0): \\ = 0 for local axes e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub> initially parallel to global axes e<sub>x</sub>, e<sub>y</sub>, e<sub>z</sub> \\ = 1 for local axes e<sub>1</sub>, e<sub>2</sub> given (and e<sub>3</sub>=e<sub>1</sub>∧e<sub>2</sub>) \\ = 2 for local axes e<sub>1</sub>, e<sub>2</sub> initially in the plane (e<sub>x</sub>, e<sub>y</sub>) forming an angle θ with e<sub>x</sub>, e<sub>y</sub> (and e<sub>3</sub>=e<sub>1</sub>∧e<sub>2</sub>) \\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| | |:::|tens (only for ILOAX>0): \\ = 0 for local axes e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub> initially parallel to global axes e<sub>x</sub>, e<sub>y</sub>, e<sub>z</sub> \\ = 1 for local axes e<sub>1</sub>, e<sub>2</sub> given (and e<sub>3</sub>=e<sub>1</sub>∧e<sub>2</sub>) \\ = 2 for local axes e<sub>1</sub>, e<sub>2</sub> initially in the plane (e<sub>x</sub>, e<sub>y</sub>) forming an angle θ with e<sub>x</sub>, e<sub>y</sub> (and e<sub>3</sub>=e<sub>1</sub>∧e<sub>2</sub>) \\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| | ||
- | + | ^Consideration of weight (5G10.0) \\ Only if INDPP = 1 ^^ | |
- | ^CONSIDERATION OF WEIGHT (5G10.0) \\ Only if INDPP = 1 ^^ | + | |
|WSPE(1)| = specific weight in X direction| | |WSPE(1)| = specific weight in X direction| | ||
|WSPE(2)| = specific weight in Y direction| | |WSPE(2)| = specific weight in Y direction| | ||
Line 37: | Line 37: | ||
|WSPE(4)| = constant heat source| | |WSPE(4)| = constant heat source| | ||
|WSPE(5)| = density| | |WSPE(5)| = density| | ||
- | ^CONSIDERATION OF SHEAR LOCKING (1G10.0) \\ Only if INSHE = 1 ^^ | + | ^Consideration of initial stresses from ferrostatic pressure (3G10.0) \\ Only if INSIG = 1 ^^ |
+ | |GAMMA | = specific weight| | ||
+ | |TSOL | = solidus temperature| | ||
+ | |TLIQ | = liquidus temperature| | ||
+ | ^Consideration of shear locking (1G10.0) \\ Only if INSHE = 1 ^^ | ||
|PARSHE| Shear locking coefficient ∈ [0,1] \\ - close to 0: avoid shear locking but higher risk of hourglass modes (use for thin elements in bending) \\ - close to 1: avoid hourglass modes but higher risk of shear locking (use for cubic elements in shear)| | |PARSHE| Shear locking coefficient ∈ [0,1] \\ - close to 0: avoid shear locking but higher risk of hourglass modes (use for thin elements in bending) \\ - close to 1: avoid hourglass modes but higher risk of shear locking (use for cubic elements in shear)| | ||
- | ^INITIAL ORIENTATION OF LOCAL AXES (6G10.0) \\ Only if tens of ILOAX = 1 or 3^^ | + | ^Initial orientation of the local axes (6G10.0) \\ Only if tens of ILOAX = 1 or 3 \\ (only one line if tens of ILOAX = 1, repeated for each element if tens of ILOAX = 3)^^ |
|e<sub>1</sub>(x)|coordinate of e<sub>1</sub> along e<sub>x</sub>| | |e<sub>1</sub>(x)|coordinate of e<sub>1</sub> along e<sub>x</sub>| | ||
|e<sub>1</sub>(y)|coordinate of e<sub>1</sub> along e<sub>y</sub>| | |e<sub>1</sub>(y)|coordinate of e<sub>1</sub> along e<sub>y</sub>| | ||
Line 47: | Line 51: | ||
|e<sub>2</sub>(z)|coordinate of e<sub>2</sub> along e<sub>z</sub>| | |e<sub>2</sub>(z)|coordinate of e<sub>2</sub> along e<sub>z</sub>| | ||
|Note: These vectors are normalized after reading but should be orthogonal: \\ e<sub>1</sub> • e<sub>2</sub> = e<sub>1</sub>(x) * e<sub>2</sub>(x) + e<sub>1</sub>(y) * e<sub>2</sub>(y) + e<sub>1</sub>(z) * e<sub>2</sub>(z) = 0|| | |Note: These vectors are normalized after reading but should be orthogonal: \\ e<sub>1</sub> • e<sub>2</sub> = e<sub>1</sub>(x) * e<sub>2</sub>(x) + e<sub>1</sub>(y) * e<sub>2</sub>(y) + e<sub>1</sub>(z) * e<sub>2</sub>(z) = 0|| | ||
- | ^INITIAL ORIENTATION OF LOCAL AXES (1G10.0) \\ Only if tens of ILOAX = 2 or 4^^ | + | ^Initial orientation of the local axes (1G10.0) \\ Only if tens of ILOAX = 2 or 4 \\ (only one line if tens of ILOAX = 2, repeated for each element if tens of ILOAX = 4)^^ |
|THETA| Angle between e<sub>1</sub> and e<sub>x</sub> in degrees| | |THETA| Angle between e<sub>1</sub> and e<sub>x</sub> in degrees| | ||
- | ^DEFINITION OF THE ELEMENTS (4I5/14I5)^^ | + | ^Definition of the elements (4I5/14I5)^^ |
|NINTE| Number of integration points (1, 2, 4 or 8) \\ Currently, only NINTE = 1 is available ! | | |NINTE| Number of integration points (1, 2, 4 or 8) \\ Currently, only NINTE = 1 is available ! | | ||
|LMATE1| Number of the material mechanical law| | |LMATE1| Number of the material mechanical law| | ||
Line 56: | Line 60: | ||
|NODES(8)| List of nodes| | |NODES(8)| List of nodes| | ||
- | ^RESULTS^^ | + | ===== Results ===== |
- | |$\sigma_x,\sigma_y,\sigma_z,\sigma_x_y,\sigma_x_z,\sigma_y_z$| | + | |
- | * $\sigma_v$ | + | $\sigma_x,\sigma_y,\sigma_z,\sigma_{xy},\sigma_{xz},\sigma_{yz},f_x,f_y,f_z,f_{capacitif}$ In global axes |
- | * $\sigma_v=\Vert \underline{\sigma}-\underline{X} \Vert -R-\sigma_Y$ | + |