This is an old revision of the document!
The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model: \[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[+ 1 \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\] \[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[+ 1 \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]
The hysteresis is then defined by: \[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w = a_w \left(S_e^{-1/m_w}\right)^{1/n_w}\] \[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/m_d}\right)^{1/n_d}\]
And therefore: \[S_e^{t+1} = S_e^t + \left(\frac{\partial S_{es}}{\partial s}\right)\times ds\]
ITHERM | $\Gamma_T$ |
---|---|
\[1\] | \[nS_w\Gamma_w+nS_a\Gamma_a+(1-n)\Gamma_s\] |
\[2\] | \[CLT1*S_w +CLT2\] |
\[3\] | \[CLT1 -\frac{CLT2}{1 + exp\left(\frac{S_w -CLT3}{CLT4}\right)}\] |