User Tools

Site Tools


appendices:a7

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
appendices:a7 [2024/06/17 16:35]
frederic
appendices:a7 [2024/06/20 16:25] (current)
frederic
Line 1: Line 1:
 ====== Appendix 7: Notion of effective stress and signification of parameter ISOL in elements CSOL2 and MWAT2 ====== ====== Appendix 7: Notion of effective stress and signification of parameter ISOL in elements CSOL2 and MWAT2 ======
  
-The definition of effective stress is mandatory when using CSOL2, MWAT2, CSOL3, MWAT3, FAIL2, FAIL3, FAIF2, FAIF3, FAIN2, FAIN3, SGRC2, SGRT2: ​+The definition of effective stress is mandatory when using CSOL2, MWAT2, CSOL3, MWAT3, FAIL2, FAIL3, FAIF2, FAIF3, FAIN2, FAIN3, SGRC2, SGRT2
 + 
 +__Remark:__ \\ 
 +For other elements than CSOL2 or MWAT2, the parameter ISOL can only be equal to 0 or 1. \\ 
 +For PLXLS : ISOL < 0 => for non saturated soil (suction effect and considered in the mechanic law) (for the Alonso'​s law). 
 + 
  
 The total stress σ is split into an effective stress σ' in the matrix and a pressure p_f in the fluid. The total stress σ is split into an effective stress σ' in the matrix and a pressure p_f in the fluid.
Line 10: Line 15:
  
  
-\[ \sigma =  \begin{cases} ​  ​\sigma'​- b p_w  & \quad \text{if } \geq 0 \\ +\[ \sigma =  \begin{cases} ​  ​\sigma'​- b p_w  & \quad \text{if } p_w \geq 0 \\ 
-    \sigma' ​ & \quad \text{if } < 0+    \sigma' ​ & \quad \text{if } p_w < 0
   \end{cases}   \end{cases}
 \] \]
Line 24: Line 29:
  
 $\sigma = \sigma'​ - b S_r p_w, \forall p_w$  \\ $\sigma = \sigma'​ - b S_r p_w, \forall p_w$  \\
-with $S_r$ = the water saturation degree, ranging between 0 and 1: 
  
 +with $S_r$ = the water saturation degree, ranging between 0 and 1.
  
-^ISOL = 6^^+ 
 +^ISOL = 6 - CSOL2 and MWAT2^^
  
 $\sigma = \sigma^* -p_a$ (Alonso'​s net stress) \\ $\sigma = \sigma^* -p_a$ (Alonso'​s net stress) \\
 +
 with $p_a$ is equal to 0 in CSOL2 and equal to air pressure in MWAT2 with $p_a$ is equal to 0 in CSOL2 and equal to air pressure in MWAT2
  
 ^ISOL = 7 - only for element MWAT2: Bishop'​s model^^ ^ISOL = 7 - only for element MWAT2: Bishop'​s model^^
  
-\[ \sigma = \sigma'​ - b\left((1-S_w)p_a+S_w p_w\right) \\ = \sigma'​ - b(S_a p_a + S_w p_w)\]+\[ \sigma = \sigma'​ - b \left((1-S_w)p_a+ S_w p_w\right) \\ = \sigma'​ - b(S_a p_a + S_w p_w)\]
 with: with:
   * $S_a$ air saturation   * $S_a$ air saturation
Line 47: Line 54:
   * $b$ is the Biot coefficient   * $b$ is the Biot coefficient
   * $\pi$ is the generalized pore pressure (Coussy-Danglat)   * $\pi$ is the generalized pore pressure (Coussy-Danglat)
-__Remark:__ \\ 
-For other elements than CSOL2 or MWAT2, the parameter ISOL can only be equal to 0 or 1. \\ 
-For PLXLS : ISOL < 0 => for non saturated soil (suction effect and considered in the mechanic law) (for the Alonso'​s law). 
  
 ^ISOL = 9 : Only for CSOL2 element and ORTHOPLA mechanical law^^ ^ISOL = 9 : Only for CSOL2 element and ORTHOPLA mechanical law^^
  
-$\sigma_{ij} = \sigma'​_{ij} - b_{ij}\theta(S_r)p , \forall ​pwith ISEM = 1 or 2 \\+$\sigma_{ij} = \sigma'​_{ij} - b_{ij} S_r p_w , \forall ​p_w \\
 with $b_{ij}$ the anisotropic Biot’s coefficient. In the orthotropic axes: \[b_{ij}=\delta_{ij}-\frac{C^e_{ijkk}}{3K_s}\] with $b_{ij}$ the anisotropic Biot’s coefficient. In the orthotropic axes: \[b_{ij}=\delta_{ij}-\frac{C^e_{ijkk}}{3K_s}\]
 In case of orthotropic axes rotation, it is transposed in the global axes as follows: \[b_{ij}=R_{ik}R_{jl}b'​_{kl}\] In case of orthotropic axes rotation, it is transposed in the global axes as follows: \[b_{ij}=R_{ik}R_{jl}b'​_{kl}\]
 where $R_{ij}$ is the rotation matrix. More details about this anisotropy are available in the definition of element CSOL2 and orthotropic law ORTHOPLA. \\ \\ where $R_{ij}$ is the rotation matrix. More details about this anisotropy are available in the definition of element CSOL2 and orthotropic law ORTHOPLA. \\ \\
-$\theta(S_r)$ is the Bishop'​s coefficient,​ depending on the material saturation, and included between 0 and 1: 
-\[ \theta(S_r) =  \begin{cases} ​  S_r = 1  & \quad \text{if } p \geq 0 \\ 
-    S_r = \frac{n}{n_0}=\frac{S}{S_0} ​ & \quad \text{if } p < 0 
-  \end{cases} 
-\] 
-with: 
-  * $p$ the pore pressure in CSOL2 
-  * $n$ the soil porosity 
-  * $S$ the accumulated fluid volume 
-  * $S_0$: $S$ in $p = 0$ 
  
appendices/a7.1718634955.txt.gz · Last modified: 2024/06/17 16:35 by frederic