User Tools

Site Tools


appendices:a10

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
appendices:a10 [2019/06/21 12:36]
helene created
appendices:a10 [2020/08/25 15:46] (current)
Line 1: Line 1:
 ====== Appendix 10: Dynamics parameters ====== ====== Appendix 10: Dynamics parameters ======
 +===== Choice of Newmark parameters ​ =====
 The conditional or non conditional stability (limited time step) of the Newmark'​s algorithm depends on the value of the parameters $\beta$ and $\gamma$. To stay in the non conditional stability zone, two parameters $\alpha$ and $k$ which scan this zone must be introduced: \[\beta=\frac{(1+\alpha)^2}{4}\] \[\gamma=\frac{1}{2}+\alpha k\] With $\alpha>​0$ and $0 \leq k \leq 1$ in the non conditionally stable zone. \\ The conditional or non conditional stability (limited time step) of the Newmark'​s algorithm depends on the value of the parameters $\beta$ and $\gamma$. To stay in the non conditional stability zone, two parameters $\alpha$ and $k$ which scan this zone must be introduced: \[\beta=\frac{(1+\alpha)^2}{4}\] \[\gamma=\frac{1}{2}+\alpha k\] With $\alpha>​0$ and $0 \leq k \leq 1$ in the non conditionally stable zone. \\
 {{:​appendices:​a10_a.png|}} \\ {{:​appendices:​a10_a.png|}} \\
Line 6: Line 7:
 That's why, one advises to take: $0 \leq \alpha \leq 1$ and $0 \leq k \leq 0.5$ \\ That's why, one advises to take: $0 \leq \alpha \leq 1$ and $0 \leq k \leq 0.5$ \\
 This is valid in the linear case. In the non linear case, some modifications may appear. This is valid in the linear case. In the non linear case, some modifications may appear.
 +{{:​appendices:​a10_2.png?​325|}}{{:​appendices:​a10_3.png?​350|}}
 +
 +===== Choice of INITV =====
 +Before any iteration, there are various ways to estimate the geometry at the end of the step $X_B$. \\
 +Considering:​ $X_B=X_A+\Delta X$ \\
 +with $X_A$ = geometry at the beginning of the step \\
 +$X_B$ = geometry at the end of the step \\
 +$\Delta X$ = increment of displacements
 +
 +The following choices are available: \\
 +^INITV^Increment of displacements^Method^
 +| \[= 0\] | \[\Delta X = 0\] |Most effective choice|
 +| \[= 1\] | \[\Delta X = \dot{V}_0 \Delta t + \ddot{V}_0 \frac{\Delta t^2}{2}\] |Central difference method|
 +| \[= 2\] | \[\Delta X = \dot{V}_0 \Delta t + \frac{1}{2} \ddot{V}_0 \Delta t^2 \left(1-\frac{2 \beta}{\gamma}\right)\] |Newmark'​s algorithm with $ \dot{V}_1=\dot{V}_0$|
 +| \[= 3\] | \[\Delta X = \dot{V}_0 \Delta t \left(1-\frac{\beta}{\gamma}\right) + \frac{1}{2} \ddot{V}_0 \Delta t^2 \left(1-\frac{2 \beta}{\gamma}\right)\] |Newmark'​s algorithm with $ \dot{V}_1=0$|
 +| \[= 3\] | \[\Delta X = \dot{V}_0 \Delta t + \frac{1}{2} \ddot{V}_0 \Delta t^2 \left(1-2 \beta\right)\] |Newmark'​s algorithm with $ \ddot{V}_1=0$|
 +
 +With: 
 +  * $\dot{V}_0$ = speeds at the beginning of the step
 +  * $\ddot{V}_0$ = accelerations at the beginning of the step
 +  * $\dot{V}_1$ = speeds at the end of the step
 +  * $\ddot{V}_1$ = accelerations at the end of the step
appendices/a10.1561113388.txt.gz · Last modified: 2020/08/25 15:33 (external edit)