User Tools

Site Tools


laws:wavat

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
laws:wavat [2019/09/19 12:00]
helene created
laws:wavat [2023/12/12 16:47] (current)
gilles [WAVAT/WAVAT2/WAVAT3]
Line 1: Line 1:
 ====== WAVAT/​WAVAT3 ====== ====== WAVAT/​WAVAT3 ======
 ===== Description ===== ===== Description =====
-Water-air seepage- thermal coupled – vapour diffusion 2D/3D constitutive law for solid elements+Water - air seepage - thermal coupled – vapour diffusion 2D/3D constitutive law for solid elements
 ==== The model ==== ==== The model ====
 This law is only  used for water seepage - air seepage-thermal coupled and vapour diffusion for non linear analysis in 2D/3D porous media. This law is only  used for water seepage - air seepage-thermal coupled and vapour diffusion for non linear analysis in 2D/3D porous media.
Line 11: Line 11:
  
 === Ecoulement du liquide et de la vapeur === === Ecoulement du liquide et de la vapeur ===
-En partant de l’équation de Darcy, la vitesse du liquide ( Volume de fluide par unité de surface de sol ) est donnée par :+En partant de l’équation de Darcy, la vitesse du liquide (Volume de fluide par unité de surface de sol) est donnée par :
 \[ \[
 \vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y)\right]\ \text{où}\ k_w = K_w \frac{\mu_w}{\rho_w g}\left[ m^2\right] \vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y)\right]\ \text{où}\ k_w = K_w \frac{\mu_w}{\rho_w g}\left[ m^2\right]
Line 102: Line 102:
 ^ Line 1 (2I5, 60A1)^^ ^ Line 1 (2I5, 60A1)^^
 |IL|Law number| |IL|Law number|
-|ITYPE| 171 (Rem : =174 in LOI2 for 3D state) |+|ITYPE| 171 (= 174 in LOI2 for 3D state) |
 |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing|
 ==== Integer parameters ==== ==== Integer parameters ====
 ^ Line 1 (18I5) ^^ ^ Line 1 (18I5) ^^
 |IANI|= 0, isotropic permeability case| |IANI|= 0, isotropic permeability case|
-|:::| $\neq$ ​0, anisotropic permeability case|+|:::| ≠ 0, anisotropic permeability case|
 |IKW|formulation index for $k_w$| |IKW|formulation index for $k_w$|
 |IKA|formulation index for $k_a$| |IKA|formulation index for $k_a$|
Line 139: Line 139:
 |:::|= 1, $\chi_w = \chi_w + \frac{H}{p_a}$ ( $p_a$ is partial pressure of air and H is Henry coefficient)| |:::|= 1, $\chi_w = \chi_w + \frac{H}{p_a}$ ( $p_a$ is partial pressure of air and H is Henry coefficient)|
 |IDIFF|= 0, with diffusion of dissolved air| |IDIFF|= 0, with diffusion of dissolved air|
-|:::|$\neq$ ​0, divisor (integer becomes real) of diffusion coefficient of dissolved air|+|:::|≠ 0, divisor (integer becomes real) of diffusion coefficient of dissolved air|
 |ISTRUCT|= 0, constant permeability| |ISTRUCT|= 0, constant permeability|
 |:::|= 1, permeability depends on microstructure evolution| |:::|= 1, permeability depends on microstructure evolution|
Line 147: Line 147:
 ==== Real parameters: permeabilities definition ==== ==== Real parameters: permeabilities definition ====
 The permeability $k_f$ is an \underline{intrinsic} permeability ($\left[L^2\right]$) $\boxed{ \begin{array}{l} k_{f, intrinsic} = K_f \frac{\mu_f}{\rho_f g}\\ \left[ L^2 \right] = \left[ LT^{-1} \right] \frac{ \left[ ML^{-1}T^{-1}\right]}{\left[ML^{-3}\right]\left[LT^{-2}\right]} \end{array}}$\\ The permeability $k_f$ is an \underline{intrinsic} permeability ($\left[L^2\right]$) $\boxed{ \begin{array}{l} k_{f, intrinsic} = K_f \frac{\mu_f}{\rho_f g}\\ \left[ L^2 \right] = \left[ LT^{-1} \right] \frac{ \left[ ML^{-1}T^{-1}\right]}{\left[ML^{-3}\right]\left[LT^{-2}\right]} \end{array}}$\\
-^If IANI$\neq$0 (4G10.0) - Repeated IANI times^^+^If IANI ≠ 0 (4G10.0) - Repeated IANI times^^
 |PERME(I)|soil anisotropic int. permeability ($k_f$) in the direction I| |PERME(I)|soil anisotropic int. permeability ($k_f$) in the direction I|
 |COSX(I)|director cosinus of the direction I \\ (in 3d state)| ​  |COSX(I)|director cosinus of the direction I \\ (in 3d state)| ​
Line 155: Line 155:
 ^If IANI = 0 (1G10.0)^^ ^If IANI = 0 (1G10.0)^^
 |PERME|soil isotropic intrinsic permeability ($k_f$)| |PERME|soil isotropic intrinsic permeability ($k_f$)|
-EndIf 
  
 ==== Real parameters ==== ==== Real parameters ====
Line 228: Line 227:
 ^If IANITH = 0: nothing^^ ^If IANITH = 0: nothing^^
 |Isotropic thermal conductivity is already defined by preceding coefficients ITHERM, CLT1, CLT2, CLT3, CT4, CONS0, CONW0, CONA0 …|| |Isotropic thermal conductivity is already defined by preceding coefficients ITHERM, CLT1, CLT2, CLT3, CT4, CONS0, CONW0, CONA0 …||
- 
-––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
  
 Following empirical formulations for describing the evolution of the relative permeability,​ the thermal conductivity and saturation with the suction are possible: see [[appendices:​a8|Appendix 8]]. Following empirical formulations for describing the evolution of the relative permeability,​ the thermal conductivity and saturation with the suction are possible: see [[appendices:​a8|Appendix 8]].
 For any suction lower than air entry value (AIREV), the saturation is equal to SRFIELD value. \\  For any suction lower than air entry value (AIREV), the saturation is equal to SRFIELD value. \\ 
-__Kozeny Karman formulation :__+__Kozeny Karman formulation:​__
 \[K = C_0 \frac{n^{EXPN}}{(1-n)^{EXPM}}\] \[K = C_0 \frac{n^{EXPN}}{(1-n)^{EXPM}}\]
 $C_0$ is computed automatically from $C_0 = K_0 \frac{(1-n_0)^{EXPM}}{(n_0)^{EXPn}}$ \\ $C_0$ is computed automatically from $C_0 = K_0 \frac{(1-n_0)^{EXPM}}{(n_0)^{EXPn}}$ \\
-__GDR Momas formulation :__+__GDR Momas formulation:​__
 \[ \[
 \frac{k}{k_0} = 1+EXPM\left[ \phi - \phi_0\right]^{EXPN}\ \text{où}\ EXPM = 2.10^{12}\ \text{et}\ EXPN = 3 \frac{k}{k_0} = 1+EXPM\left[ \phi - \phi_0\right]^{EXPN}\ \text{où}\ EXPM = 2.10^{12}\ \text{et}\ EXPN = 3
 \] \]
  
-__Coupling permeability-deformation formulation :__ (only in 2D)+__Coupling permeability-deformation formulation:​__ (only in 2D)
 \[ \[
 K_{ij} = \sum_n K_n^0 (1+A\varepsilon_n^T)^3\beta_{ij} (\alpha_n) K_{ij} = \sum_n K_n^0 (1+A\varepsilon_n^T)^3\beta_{ij} (\alpha_n)
Line 333: Line 330:
 |Q(24)|$\varepsilon_1$ | |Q(24)|$\varepsilon_1$ |
 |Q(25)|$\varepsilon_2$ | |Q(25)|$\varepsilon_2$ |
-|Q(26)|$\alpha$ (=angle between principal stress and horizontal) |+|Q(26)|$\alpha$ (= angle between principal stress and horizontal) |
  
laws/wavat.1568887221.txt.gz · Last modified: 2020/08/25 15:35 (external edit)