This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
laws:wavat [2019/09/19 12:00] helene created |
laws:wavat [2023/12/12 16:47] (current) gilles [WAVAT/WAVAT2/WAVAT3] |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== WAVAT/WAVAT3 ====== | ====== WAVAT/WAVAT3 ====== | ||
===== Description ===== | ===== Description ===== | ||
- | Water-air seepage- thermal coupled – vapour diffusion 2D/3D constitutive law for solid elements | + | Water - air seepage - thermal coupled – vapour diffusion 2D/3D constitutive law for solid elements |
==== The model ==== | ==== The model ==== | ||
This law is only used for water seepage - air seepage-thermal coupled and vapour diffusion for non linear analysis in 2D/3D porous media. | This law is only used for water seepage - air seepage-thermal coupled and vapour diffusion for non linear analysis in 2D/3D porous media. | ||
Line 11: | Line 11: | ||
=== Ecoulement du liquide et de la vapeur === | === Ecoulement du liquide et de la vapeur === | ||
- | En partant de l’équation de Darcy, la vitesse du liquide ( Volume de fluide par unité de surface de sol ) est donnée par : | + | En partant de l’équation de Darcy, la vitesse du liquide (Volume de fluide par unité de surface de sol) est donnée par : |
\[ | \[ | ||
\vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y)\right]\ \text{où}\ k_w = K_w \frac{\mu_w}{\rho_w g}\left[ m^2\right] | \vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y)\right]\ \text{où}\ k_w = K_w \frac{\mu_w}{\rho_w g}\left[ m^2\right] | ||
Line 102: | Line 102: | ||
^ Line 1 (2I5, 60A1)^^ | ^ Line 1 (2I5, 60A1)^^ | ||
|IL|Law number| | |IL|Law number| | ||
- | |ITYPE| 171 (Rem : =174 in LOI2 for 3D state) | | + | |ITYPE| 171 (= 174 in LOI2 for 3D state) | |
|COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| | |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| | ||
==== Integer parameters ==== | ==== Integer parameters ==== | ||
^ Line 1 (18I5) ^^ | ^ Line 1 (18I5) ^^ | ||
|IANI|= 0, isotropic permeability case| | |IANI|= 0, isotropic permeability case| | ||
- | |:::| $\neq$ 0, anisotropic permeability case| | + | |:::| ≠ 0, anisotropic permeability case| |
|IKW|formulation index for $k_w$| | |IKW|formulation index for $k_w$| | ||
|IKA|formulation index for $k_a$| | |IKA|formulation index for $k_a$| | ||
Line 139: | Line 139: | ||
|:::|= 1, $\chi_w = \chi_w + \frac{H}{p_a}$ ( $p_a$ is partial pressure of air and H is Henry coefficient)| | |:::|= 1, $\chi_w = \chi_w + \frac{H}{p_a}$ ( $p_a$ is partial pressure of air and H is Henry coefficient)| | ||
|IDIFF|= 0, with diffusion of dissolved air| | |IDIFF|= 0, with diffusion of dissolved air| | ||
- | |:::|$\neq$ 0, divisor (integer becomes real) of diffusion coefficient of dissolved air| | + | |:::|≠ 0, divisor (integer becomes real) of diffusion coefficient of dissolved air| |
|ISTRUCT|= 0, constant permeability| | |ISTRUCT|= 0, constant permeability| | ||
|:::|= 1, permeability depends on microstructure evolution| | |:::|= 1, permeability depends on microstructure evolution| | ||
Line 147: | Line 147: | ||
==== Real parameters: permeabilities definition ==== | ==== Real parameters: permeabilities definition ==== | ||
The permeability $k_f$ is an \underline{intrinsic} permeability ($\left[L^2\right]$) $\boxed{ \begin{array}{l} k_{f, intrinsic} = K_f \frac{\mu_f}{\rho_f g}\\ \left[ L^2 \right] = \left[ LT^{-1} \right] \frac{ \left[ ML^{-1}T^{-1}\right]}{\left[ML^{-3}\right]\left[LT^{-2}\right]} \end{array}}$\\ | The permeability $k_f$ is an \underline{intrinsic} permeability ($\left[L^2\right]$) $\boxed{ \begin{array}{l} k_{f, intrinsic} = K_f \frac{\mu_f}{\rho_f g}\\ \left[ L^2 \right] = \left[ LT^{-1} \right] \frac{ \left[ ML^{-1}T^{-1}\right]}{\left[ML^{-3}\right]\left[LT^{-2}\right]} \end{array}}$\\ | ||
- | ^If IANI$\neq$0 (4G10.0) - Repeated IANI times^^ | + | ^If IANI ≠ 0 (4G10.0) - Repeated IANI times^^ |
|PERME(I)|soil anisotropic int. permeability ($k_f$) in the direction I| | |PERME(I)|soil anisotropic int. permeability ($k_f$) in the direction I| | ||
|COSX(I)|director cosinus of the direction I \\ (in 3d state)| | |COSX(I)|director cosinus of the direction I \\ (in 3d state)| | ||
Line 155: | Line 155: | ||
^If IANI = 0 (1G10.0)^^ | ^If IANI = 0 (1G10.0)^^ | ||
|PERME|soil isotropic intrinsic permeability ($k_f$)| | |PERME|soil isotropic intrinsic permeability ($k_f$)| | ||
- | EndIf | ||
==== Real parameters ==== | ==== Real parameters ==== | ||
Line 228: | Line 227: | ||
^If IANITH = 0: nothing^^ | ^If IANITH = 0: nothing^^ | ||
|Isotropic thermal conductivity is already defined by preceding coefficients ITHERM, CLT1, CLT2, CLT3, CT4, CONS0, CONW0, CONA0 …|| | |Isotropic thermal conductivity is already defined by preceding coefficients ITHERM, CLT1, CLT2, CLT3, CT4, CONS0, CONW0, CONA0 …|| | ||
- | |||
- | ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | ||
Following empirical formulations for describing the evolution of the relative permeability, the thermal conductivity and saturation with the suction are possible: see [[appendices:a8|Appendix 8]]. | Following empirical formulations for describing the evolution of the relative permeability, the thermal conductivity and saturation with the suction are possible: see [[appendices:a8|Appendix 8]]. | ||
For any suction lower than air entry value (AIREV), the saturation is equal to SRFIELD value. \\ | For any suction lower than air entry value (AIREV), the saturation is equal to SRFIELD value. \\ | ||
- | __Kozeny Karman formulation :__ | + | __Kozeny Karman formulation:__ |
\[K = C_0 \frac{n^{EXPN}}{(1-n)^{EXPM}}\] | \[K = C_0 \frac{n^{EXPN}}{(1-n)^{EXPM}}\] | ||
$C_0$ is computed automatically from $C_0 = K_0 \frac{(1-n_0)^{EXPM}}{(n_0)^{EXPn}}$ \\ | $C_0$ is computed automatically from $C_0 = K_0 \frac{(1-n_0)^{EXPM}}{(n_0)^{EXPn}}$ \\ | ||
- | __GDR Momas formulation :__ | + | __GDR Momas formulation:__ |
\[ | \[ | ||
\frac{k}{k_0} = 1+EXPM\left[ \phi - \phi_0\right]^{EXPN}\ \text{où}\ EXPM = 2.10^{12}\ \text{et}\ EXPN = 3 | \frac{k}{k_0} = 1+EXPM\left[ \phi - \phi_0\right]^{EXPN}\ \text{où}\ EXPM = 2.10^{12}\ \text{et}\ EXPN = 3 | ||
\] | \] | ||
- | __Coupling permeability-deformation formulation :__ (only in 2D) | + | __Coupling permeability-deformation formulation:__ (only in 2D) |
\[ | \[ | ||
K_{ij} = \sum_n K_n^0 (1+A\varepsilon_n^T)^3\beta_{ij} (\alpha_n) | K_{ij} = \sum_n K_n^0 (1+A\varepsilon_n^T)^3\beta_{ij} (\alpha_n) | ||
Line 333: | Line 330: | ||
|Q(24)|$\varepsilon_1$ | | |Q(24)|$\varepsilon_1$ | | ||
|Q(25)|$\varepsilon_2$ | | |Q(25)|$\varepsilon_2$ | | ||
- | |Q(26)|$\alpha$ (=angle between principal stress and horizontal) | | + | |Q(26)|$\alpha$ (= angle between principal stress and horizontal) | |