User Tools

Site Tools


laws:rubb

This is an old revision of the document!


RUBB

Description

Hyperelastic constitutive law for solid elements at constant temperature

The model

This law is only used for large strains analysis of rubber-like materials

Files

Prepro: LRUBB.F
Lagamine: RUBB2S.F, RUBB2E.F, RUBB2A.F, RUBB3D.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 6
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
MODEL = 0 : using Mooney-Rivlin model
= 1 : using Kilian model
MFUN = 0 : using penalty function : $ln I_3$
= 1 : using penalty function : $I_3 - l$

Remark: the strain energy density function W for Mooney-Rivlin model : \[ W = C_l (I_l - 3) + C_2 (I_2 - 3) \] For Kilian model : \[ W = G \{ 2 D_m \left[ \ln\left( l \frac{D_l}{D_m}\right) + \frac{D_l}{D_m} \right] + \frac{2}{3} a D_l^{\frac{2}{3}} \} \] \[ D_l = 0.5 (I_l - 3 ) \] ($I_1, I_2, I_3$ are the three strain invariants of the Cauchy-Green deformation tensor)

Real parameters

For Mooney-Rivlin model:

Line 1 (3G10.0)
$C_1$
$C_2$
ANU

For Kilian model (4G10.0):

Line 1 (4G10.0)
$G$
$D_m$
ANU
a

( the range of the Poisson's ratio : $0.489 < ANU < 0.5$ )

Stresses

Number of stresses

= 6 for the 3-D state
= 4 for the other cases.

Meaning

The stresses are the components of CAUCHY stress tensor in global (X, Y, Z) coordinates. For the 3-D state :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

3

List of state variables

Q(1)= element thickness (t) in plane stress state
= 1 in plane strain state
= circumferential strain rate ($\varepsilon_r$) in axisymmetrical state
= 0 in 3‑D state
= element thickness (t) in generalized plane state.
Q(2)hydrostatic pressure
Q(3)the third strain invariant of the Cauchy-Green deformation tensor
laws/rubb.1571059951.txt.gz · Last modified: 2020/08/25 15:35 (external edit)