User Tools

Site Tools


laws:rchim

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:rchim [2024/04/19 14:07]
arthur [The model]
laws:rchim [2024/04/22 16:59] (current)
arthur
Line 9: Line 9:
 If ICOAL=1, the reaction modelled is the burning of coal. Several chemical species are of interest: the $O_2$ content required for the reaction to take place and the $CO_2$ produced. The concentration of solid product (CSP) and the concentration of exhausted gas (CEG) are also measured. In this case, the 6th DOF is the $O_2$ content.\\ If ICOAL=1, the reaction modelled is the burning of coal. Several chemical species are of interest: the $O_2$ content required for the reaction to take place and the $CO_2$ produced. The concentration of solid product (CSP) and the concentration of exhausted gas (CEG) are also measured. In this case, the 6th DOF is the $O_2$ content.\\
  
-Because of the rate of the reaction, a sub-incrementation is performed with respect to the temperature. It is obtained from the reaction rate $\tau_{O_2}$:​+Because of the rate of the reaction, a sub-incrementation is performed with respect to the time. It is obtained from the reaction rate $\tau_{O_2}$:​
 \[\tau_{O_2}= \frac{1089}{26 * 32}\left[C_{coal}*AK0*\exp{\left(\frac{-EDR}{TEMP}\right)}\right]^{-1}\] \[\tau_{O_2}= \frac{1089}{26 * 32}\left[C_{coal}*AK0*\exp{\left(\frac{-EDR}{TEMP}\right)}\right]^{-1}\]
  
-The new chemical ​temperature gradient ​is then $\Delta ​T_{ch} = 0.1*\tau_{O_2}$. The following calculations are then performed until reaching $\Delta ​T$:+The new chemical ​time step is then $\Delta ​t_{ch} = 0.1*\tau_{O_2}$. The following calculations are then performed until reaching $\Delta ​t$:
 \[AQF = C_{COAL} * C_{O_2} * AK0 * \exp{\left(\frac{-EDR}{TEMP}\right)}\] \[AQF = C_{COAL} * C_{O_2} * AK0 * \exp{\left(\frac{-EDR}{TEMP}\right)}\]
-\[C_{COAL} = C_{COAL}- AQF * \Delta ​T_{ch}\] +\[C_{COAL} = C_{COAL}- AQF * \Delta ​t_{ch}\] 
-\[C_{O_2} = C_{O_2}- AQF * \Delta ​T_{ch}* \left(\frac{26*32}{1089}\right) \frac{1}{CPORO}\] with $CPORO=0.4$.\\+\[C_{O_2} = C_{O_2}- AQF * \Delta ​t_{ch}* \left(\frac{26*32}{1089}\right) \frac{1}{CPORO}\] with $CPORO=0.4$.\\
  
-Finally, the increment of $O_2$ concentration ($\Delta ​T_{C_{O_2}}= C_{C_{O_2},ini} - C_{C_{O_2}}$) is calculated and the parameters of interest are updated only if that increment is inferior to 1E-4: +Finally, the increment of $O_2$ concentration ($\Delta C_{O_2}= C_{O_2,ini} - C_{O_2}$) is calculated and the parameters of interest are updated only if that increment is inferior to 1E-4: 
-\[\Delta ​T_{C_{coal}}= C_{coal,​ini} - C_{coal}\] +\[\Delta C_{coal}= C_{coal,​ini} - C_{coal}\] 
-\[FL_{coal} = -\Delta H * \frac{\Delta ​T_{C_{coal}}}{\Delta ​T}\] +\[FL_{coal} = -\Delta H * \frac{\Delta C_{coal}}{\Delta ​t}\] 
-\[CEG = CEG + \Delta ​T_{C_{coal}}* \left(\frac{47*305E-1}{1089}\right)\frac{1}{CPORO}\] +\[CEG = CEG + \Delta C_{coal}* \left(\frac{47*305E-1}{1089}\right)\frac{1}{CPORO}\] 
-\[CSP = CSP + \Delta ​T_{C_{coal}}* \left(\frac{1*489}{1089}\right)\]+\[CSP = CSP + \Delta C_{coal}* \left(\frac{1*489}{1089}\right)\]
 Otherwise, $FL_{coal}$ is set to zero and all the parameters are set equal to their initial values. Otherwise, $FL_{coal}$ is set to zero and all the parameters are set equal to their initial values.
  
Line 34: Line 34:
 \[\tau_{CO_2}= \frac{76}{44}\left[ \frac{\alpha_1*FH*C_{CO2}}{G_{max}}*\left(1-\left(\frac{C_{CaCO_3}}{C_{max}}\right)\right)*A*\exp\left(\frac{-E_0}{(R*TEMP)}\right)\right]^{-1}\] \[\tau_{CO_2}= \frac{76}{44}\left[ \frac{\alpha_1*FH*C_{CO2}}{G_{max}}*\left(1-\left(\frac{C_{CaCO_3}}{C_{max}}\right)\right)*A*\exp\left(\frac{-E_0}{(R*TEMP)}\right)\right]^{-1}\]
  
-The new chemical ​temperature gradient ​is then $\Delta ​T_{ch} = 0.1*\tau_{CO_2}$. The following calculations are then performed until reaching $\Delta ​T$: +The new chemical ​time step is then $\Delta ​t_{ch} = 0.1*\tau_{CO_2}$. The following calculations are then performed until reaching $\Delta ​t$: 
-\[AQF = \frac{\alpha_1*FH*C_{CO_2}}{G_{max}}*\left(1-\left((\frac{C_{CaCO_3}}{C_{ma}}\right)\right)*A*\exp\left(\frac{-E_0}{(R*TEMP)}\right)\] +\[AQF = \frac{\alpha_1*FH*C_{CO_2}}{G_{max}}*\left(1-\left(\frac{C_{CaCO_3}}{C_{ma}}\right)\right)*A*\exp\left(\frac{-E_0}{(R*TEMP)}\right)\] 
-\[C_{Ca(OH)_2} = C_{Ca(OH)_2}-AQF*\Delta ​T_{ch}\]+\[C_{Ca(OH)_2} = C_{Ca(OH)_2}-AQF*\Delta ​t_{ch}\]
 \[C_{CaCO_3}= 0\] \[C_{CaCO_3}= 0\]
-\[C_{CO_2} = C_{CO_2}- AQF*\Delta ​T_{ch}*\frac{44}{76}\]+\[C_{CO_2} = C_{CO_2}- AQF*\Delta ​t_{ch}*\frac{44}{76}\]
  
-Finally, the increment of $CO_2$ concentration ($\Delta ​T_{CO_2}= C_{CO_2,​ini} - C_{CO_2}$) is calculated and the parameters of interest are updated only if that increment is inferior to 1E-10: +Finally, the increment of $CO_2$ concentration ($\Delta ​C_{CO_2}= C_{CO_2,​ini} - C_{CO_2}$) is calculated and the parameters of interest are updated only if that increment is inferior to 1E-10: 
-\[\Delta ​T_{C_{Ca(OH)_2}} = C_{Ca(OH)_2,​ini} - C_{Ca(OH)_2}\] +\[\Delta C_{Ca(OH)_2} = C_{Ca(OH)_2,​ini} - C_{Ca(OH)_2}\] 
-\[FL_{coal} = \frac{\Delta ​T_{CO_2}}{\Delta ​T}\]+\[FL_{coal} = \frac{\Delta ​C_{CO_2}}{\Delta ​t}\]
 Otherwise, $FL_{coal}$ is set to zero and all the parameters are set equal to their initial values. Otherwise, $FL_{coal}$ is set to zero and all the parameters are set equal to their initial values.
  
Line 119: Line 119:
 ==== Integer parameters ==== ==== Integer parameters ====
 ^ Line 1 (1I5) ^^ ^ Line 1 (1I5) ^^
-|ICOAL|= 1 | +|ICOAL|= 1 for the combustion of coal (?)
-|:::|= 2 |+|:::|= 2 for a reaction of carbonation (?)|
 |:::|= 3 to use the biochemical degradation of the organic matter ​ | |:::|= 3 to use the biochemical degradation of the organic matter ​ |
 +|:::|=4 to use the carbonation of cementitious materials|
 ^ Line 2 (2G10.0) ^^ ^ Line 2 (2G10.0) ^^
 |FLUXF|| |FLUXF||
Line 167: Line 168:
 |CM|initial condition on methanogen biomass concentration|  ​ |CM|initial condition on methanogen biomass concentration|  ​
 |ORG|initial condition on organic matter content| |ORG|initial condition on organic matter content|
 +
 +__If ICOAL = 4__
 +^ Line 1 (7G10.0) ^^
 +|hmin|Minimal pore relative humidity|
 +|ALPHA|Material parameter|
 +|GMAX|Maximum CO2 content|
 +|z|Cement content of the mix|
 +|C|Ca(OH)2 content of the mix|
 +|CAOH2|Ca(OH)2 content of the mix|
 +|CACO3|CaCO3 content of the mix|
 +^ Line 2 (7G10.0) ^^
 +|ISR|Index for the water retention curve|
 +|CSR1|Parameter 1 of the WRC|
 +|CSR2|Parameter 2 of the WRC|
 +|CSR3|Parameter 3 of the WRC|
 +|CSR4|Parameter 4 of the WRC|
 +|CSR5|Parameter 5 of the WRC|
 +|NSUBH|Number of sub-increment for the hysteresis (if ISR=53)|
 +^Line 3 (4G10.0) ^^
 +|SRW|Initial saturation degree of the porous medium|
 +|SRES|Minimal Srw|
 +|SRFIELD|Maximal Srw|
 +|POROS|Porosity|
 +
 ===== Stresses ===== ===== Stresses =====
 ==== Number of stresses ==== ==== Number of stresses ====
Line 198: Line 223:
 |Q(3)|Modified enzymatic hydrolysis rate (VFA accumulation rate) | |Q(3)|Modified enzymatic hydrolysis rate (VFA accumulation rate) |
 |Q(4)|VFA depletion rate | |Q(4)|VFA depletion rate |
 +
 +__IF ICOAL = 4 :__
 +|Q(1)|Ca(OH)2 content ​ |
 +|Q(2)|CACO3 content ​ |
 +|Q(3)|SRW |
 +|Q(4)|/ |
  
  
laws/rchim.1713528453.txt.gz · Last modified: 2024/04/19 14:07 by arthur