User Tools

Site Tools


laws:orthoplatra

ORTHOPLATRA

Description

Elasto-plastic constitutive law for solid elements at constant temperature (non-associated) with non-linear anisotropic elasticity. Isotropic hardening/softening of friction angle and cohesion is possible. Tensile criterion for desiccation cracking included. Isotropic hardening/softening of tensile strength is possible.

This law is a variation of ORTHOPLA including a tensile failure criterion.

The model

This law is used for mechanical analysis of elasto-plastic anisotropic porous media undergoing drying (large strain). It is primarily used to predict desiccation cracks onset (can be used for other tensile loading configurations).

Tensile criterion

\[f = II_2 +\frac{1}{(3.\cos\beta-\sqrt{3}\sin\beta)}.(I_1-3.\sigma'_t)\] where $I_1$, $II_2$ are respectively the first invariant of the stress tensor and the second invariant of the deviatoric stress tensor. $\beta$ is Lode's angle and $\sigma_t$ is the material tensile strength.

Peron's formulation for tensile strength variation with suction

\[\sigma_t'=\sigma_t'^{sat}-\left(k_2*\left(1-\exp\left(\frac{-k_1.s}{k_{20}}\right)\right)\right)\] where $\sigma_t'$ is the effective tensile strength, $\sigma_t'^{sat}$ is the saturated effective tensile strength, $k_1$ and $k_2$ are model parameters. $k_1$ controls the variation speed and $k_2$ is the maximum delta.

Files

Prepro: LORTHOPLATRA.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 619
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (12I5)
NINTV $\neq$ 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV
ISOL = 0 : Use of total stresses in the constitutive law
$\neq$ 0 : Use of effective stresses in the constitutive law (See Appendix 8)
ICBIF = 0 : nothing
= 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis)
ILODEF Shape of the yield surface in the deviatoric plane
= 1 : circle in the deviatoric plane
= 2 : smoothed irregular hexagon in the deviatoric plane
ILODEG Shape of the flow surface in the deviatoric plane
= 1 : circle in the deviatoric plane
= 2 : smoothed irregular hexagon in the deviatoric plane
IECPS = 0 : $\Psi$ is defined with PSIC and PSIE
= 1 : $\Psi$ is defined with PHMPS
KMETH = 2 : Actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value)
IREDUC = 0 : nothing
= 1 : Phi-C reduction method
ICOCA = 0 : nothing
= 1 : Capillary cohesion formulation ($c = c_0+AK1.s+AK2.s^2$)
= 2 : $c=c_0+AK1.\log(s)+AK2$
= 3 : Linear dependence of the elastic modulus to the suction $E_i=(1+AK2.s).E_{0,i}$ 
= 4 : Dependence of the elastic modulus on the suction through an exponential relation $E_i=E_{0,i}+EK_i.(1+AK2.s).E_{0,i}$
= 5 : Dependence of the elastic modulus on the mean stress state $E_i=E_{0,i}+EK_i.(\frac{p}{AK1})^{AK2}$ 
IBEDDING Bedding orientation (normal to the bedding plane)
= 1 : bedding plane in $e_1e_2$ anisotropic plane (normal $e_3$)
= 2 : bedding plane in $e_1e_3$ anisotropic plane (normal $e_2$)
= 3 : bedding plane in $e_2e_3$ anisotropic plane (normal $e_1$)
IANISO = 0 : Anisotropy of cohesion with major principal stress orientation relative to bedding
= 1 : Anisotropy of cohesion by microstructure fabric tensor
IVISCO = 0 : nothing 
= 1 to 3 : viscoplastic model

Real parameters

Line 1 (3G10.0)
ALPHA Angle of rotation of the anisotropic axis around Z axis (see figure above)
THETA Angle of rotation of the anisotropic axis around $e_1$ axis (see figure above)
PHI Angle of rotation of the anisotropic axis around $e_2$ axis (see figure above)
Line 2 (6G10.0)
E1 Elastic Young modulus E($e_1$)
E2 Elastic Young modulus E($e_2$)
E3 Elastic Young modulus E($e_3$)
G12 Elastic shear modulus G($e_1e_2$)
G13 Elastic shear modulus G($e_1e_3$)
G23 Elastic shear modulus G($e_2e_3$)
Line 3 (5G10.0)
ANU12 Poisson ratio NU($e_1e_2$)
ANU13 Poisson ratio NU($e_1e_3$)
ANU23 Poisson ratio NU($e_2e_3$)
RHO Specific mass
DIV Size of sub-steps for computation of NINTV (only if NINTV=0, Default value=$5.D-3$) 
Line 4 (7G10.0)
PSIC Dilatancy angle (in degrees) for compressive paths
PSIE Dilatancy angle (in degrees) for extensive paths (iff ILODEG=2)
PHMPS Constant value for definition of (????!!!!)
BIOPT Bifurcation computation parameter
AK1 Capillary cohesion first parameter 
AK2 Capillary cohesion second parameter 
DECCOH Cohesion hardening shifting
Line 5 (7G10.0)
PHICF Final Coulomb's angle (in degrees) for compressive paths
PHIEF Final Coulomb's angle (in degrees) for extensive paths (iff ILODEF=2)
RAYPHIC Ratio between initial and residual friction angle for compressive paths
BPHI Only if there is hardening/softening 
AN Van Eekelen exponent (default value = -0.229)
DECPHI Coulomb's angle hardening shifting
RAYPHIE Ratio between initial and residual friction angle for extensive paths (iff ILODEF=2)
Line 6 (6G10.0)
COHF0 Residual value of cohesion for major principal stress 1 perpendicular to the bedding plane (parallel to the normal to the bedding plane) (if IANISO=0)
= COHC0 = $c_0$ (if IANISO=1) (See paragraph 7.4)
COHFMIN Minimal residual value of cohesion (if IANISO=0)
= COHAISO = $A_{11}$ (if IANISO=1) (See paragraph 7.4)
COHF90 Residual value of cohesion for major principal stress 1 parallel to the bedding plane (perpendicular to the normal to the bedding plane) (if IANISO=0)
= COHB1 = $b_1$ (if IANISO=1) (See paragraph 7.4)
ANGLEMIN Angle between the normal to the bedding plane and the major principal stress 1 for which the cohesion is minimum (if IANISO=0)
= COHB2 = $b_2$ (if IANISO=1) (See paragraph 7.4) 
RAYCOH Ratio between initial and residual cohesion
BCOH Only if there is hardening/softening
Line 7 (7G10.0)
SIGMAT0 Initial value of the uniaxial tensile strength
SIGMATF Final value of the uniaxial tensile strength (for hardening/softening) 
AKSIGMAT1 First parameter of Peron's formulation to account for the tensile strength evolution with suction
AKSIGMAT20 Initial value of the second parameter of Peron's formulation to account for the tensile strength evolution with suction
AKSIGMAT2F Final value of the second parameter of Peron's formulation to account for the tensile strength evolution with suction (for hardening/softening)
BSIGMAT Only if there is hardening/softening
PSI2 Dilatancy angle for the tensile criterion 
Line 8 (3G10.0)
EK1 Model parameter for non-linear elasticity (depending on ICOCA)
EK2 Model parameter for non-linear elasticity (depending on ICOCA)
EK3 Model parameter for non-linear elasticity (depending on ICOCA)

Stresses

Number of stresses

4 for 2D analysis

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For 2D analysis :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

54 for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
42 in all the other cases

List of state variables

Q(1) = 1 in plane strain state
= Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) Actualised specific mass
Q(3) Reduced deviatoric stress (varies from 0 to 1)
Q(4) = 0 if the current state is elastic
= 1 if the current state is elasto-plastic
Q(5) Equivalent viscoplastic shear strain, i.e. the generalised plastic distortion, which increment is $\dot{\gamma}_{vp}=\sqrt{\frac{2}{3}\dot{e}_{ij}^{vp}\dot{e}^{vp}_{ij}}$) (see PLASOL)
Q(6) Equivalent strain n°1 $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\Delta t$
Q(7) Equivalent strain indicator n°1 (Villote n°1) $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\Delta t}{\varepsilon_{eq1}}$
Q(8) $=\varepsilon_{xx}$
Q(9) $=\varepsilon_{yy}$
Q(10) $=\varepsilon_{zz}$
Q(11) $=\gamma_{xy}=2.\varepsilon_{xy}$
Q(12) Equivalent strain n°2 $\varepsilon_{eq2}=\int\Delta\varepsilon_{eq}$
Q(13) Equivalent strain indicator n°2 (Villote n°2) $\alpha_2=\frac{\Delta\varepsilon_{eq}}{\varepsilon_{eq2}}$
Q(14) Actualised value of equivalent plastic strain $\varepsilon^p_{eq}$ 
Q(15) Actualised value of cohesion for bedding perpendicular to 1st principal stress
= COHF0 (if IANISO=0) or COHC0 (if IANISO=1) 
Q(16) Actualised value of cohesion $c$
Q(17) Actualised value of Coulomb's friction angle for compressive paths $\phi_C$
Q(18) Actualised value of Coulomb's friction angle for extensive paths $\phi_E$
Q(19) = 0 if the stress state is not at the criterion apex
= 1 if the stress state is at the criterion apex
Q(20) Number of sub-intervals used for the integration
Q(21) Memory of localisation calculated during the re-meshing
Q(22) ?
Q(23) ?
Q(24) ORIENTBED
Q(25) Dilatancy angle in compression
Q(26) Dilatancy angle in extension
Q(27) Damage variable
Q(28) x plastic deformation
Q(29) y plastic deformation
Q(30) z plastic deformation
Q(31) xy plastic deformation
Q(32) Saturated effective material tensile strength
Q(33) First invariant of the strength sensor
Q(34) Second invariant of the deviatoric strength sensor
Q(35) Lode's angle
Q(36) Effective material tensile strength 
Q(37) Volumic plastic strain generated by the tensile failure criterion
Q(38) E1 
Q(39) E2 
Q(40) E3 
Q(41) Saturation degree * suction
Q(42) Second model parameter for Peron's formulation
Q(43)$\rightarrow$Q(54) Reserved for bifurcation
laws/orthoplatra.txt · Last modified: 2020/08/25 15:46 (external edit)