User Tools

Site Tools


laws:orthopla

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:orthopla [2023/11/28 17:58]
hangbiao
laws:orthopla [2024/01/23 12:15] (current)
hangbiao
Line 23: Line 23:
  :​laws:​schematic_view_of_the_angle_between_the_normal_to_bedding_plane_and_the_direction_of_major_principal_stress.png?​150 ​ |}}</​imgcaption>​  :​laws:​schematic_view_of_the_angle_between_the_normal_to_bedding_plane_and_the_direction_of_major_principal_stress.png?​150 ​ |}}</​imgcaption>​
  
-Three cohesion values are defined ($c_{0^{\circ}},​ c_{min}, c_{90^{\circ}}$),​ for major principal stress parallel $\alpha_{\sigma_1} = 0^{\circ}$ (perpendicular),​ perpendicular $\alpha_{\sigma_1} = 90^{\circ}$ (parallel) and with an angle of $\alpha_{\sigma_1,​ min}$ with respect to the normal to bedding plane (with respect to the bedding plane). Between those values, cohesion varies linearly with $\alpha_{\sigma_1}$. The mathematical expression of the cohesion is as follows:+Three cohesion values are defined ($c_{0^{\circ}},​ c_{min}, c_{90^{\circ}}$),​ for major principal stress parallel $\alpha_{\sigma_1} = 0^{\circ}$ (perpendicular),​ perpendicular $\alpha_{\sigma_1} = 90^{\circ}$ (parallel) and with an angle of $\alpha_{\sigma_1,​ min}$ with respect to the normal to bedding plane (with respect to the bedding plane)  (Salehnia, 2015)((Salehnia,​ F. (2015) From some obscurity to clarity in Boom clay behavior: Analysis of its coupled hydro-mechanical response in the presence of strain localization. Thesis, Liège University.)). Between those values, cohesion varies linearly with $\alpha_{\sigma_1}$. The mathematical expression of the cohesion is as follows:
 \[ \[
 c = \max \left[\left( \frac{c_{min} - c_{0^{\circ}}}{\alpha_{\sigma_1,​ min}} \right)\alpha_{\sigma_1} + c_{0^{\circ}} ;  \left( \frac{c_{90^{\circ}} - c_{min}}{90^{\circ} - \alpha_{\sigma_1,​ min}} \right)\left( \alpha_{\sigma_1} - \alpha_{\sigma_1,​ min} \right)+ c_{0^{\circ}} ​ \right] c = \max \left[\left( \frac{c_{min} - c_{0^{\circ}}}{\alpha_{\sigma_1,​ min}} \right)\alpha_{\sigma_1} + c_{0^{\circ}} ;  \left( \frac{c_{90^{\circ}} - c_{min}}{90^{\circ} - \alpha_{\sigma_1,​ min}} \right)\left( \alpha_{\sigma_1} - \alpha_{\sigma_1,​ min} \right)+ c_{0^{\circ}} ​ \right]
Line 47: Line 47:
 Considering cross-anisotropy,​ i.e. transverse isotropy, and refering the problem to the principal material axes implies $A_{ij} = 0$ for $i \neq j$, $A_{ii} = A_{11}+A_{22}+A_{33} = 0$, $A_{11} = A_{33}$ if the bedding plane is in ($e_1, e_3$) anisotropic plane, $A_{22} = -2A_{11}$, implying : Considering cross-anisotropy,​ i.e. transverse isotropy, and refering the problem to the principal material axes implies $A_{ij} = 0$ for $i \neq j$, $A_{ii} = A_{11}+A_{22}+A_{33} = 0$, $A_{11} = A_{33}$ if the bedding plane is in ($e_1, e_3$) anisotropic plane, $A_{22} = -2A_{11}$, implying :
 \[A_{ij}l_il_j = A_{l1}(1-3l_2^2)\] \[A_{ij}l_il_j = A_{l1}(1-3l_2^2)\]
-where $A_{11}$ is the component of the microstructure operator $A_{ij}$ in the isotropic (bedding) plane. The late expression for cohesion becomes :+where $A_{11}$ is the component of the microstructure operator $A_{ij}$ in the isotropic (bedding) plane. The late expression for cohesion becomes ​(Pardoen, 2015)((Pardoen,​ B. (2015) ​ Hydro-mechanical analysis of the fracturing induced by the excavation of nuclear waste repository galleries using shear banding. Thesis, Liège University.)):
 \[c= c_0 \left( 1+A_{l1}(1-3l_2^2) + b_1A_{l1}^2(1-3l_2^2)^2 + b_2A_{l1}^3(1-3l_2^2)^3 + … \right)\] \[c= c_0 \left( 1+A_{l1}(1-3l_2^2) + b_1A_{l1}^2(1-3l_2^2)^2 + b_2A_{l1}^3(1-3l_2^2)^3 + … \right)\]
  
Line 57: Line 57:
 ==== Vicoplasticity ==== ==== Vicoplasticity ====
 See [[laws:​epplasol|PLASOL]] \\ See [[laws:​epplasol|PLASOL]] \\
-Remark : For anisotropic Biot’s coeffcient, the deviatoric stress ​ is calculated from the effective stresses (more details about this anisotropy are available in the definition of element CSOL2 and ISOL=9 in [[appendices:​a8|Appendix ​8]]).+Remark : For anisotropic Biot’s coeffcient, the deviatoric stress ​ is calculated from the effective stresses (more details about this anisotropy are available in the definition of element CSOL2 and ISOL=9 in [[appendices:​a7|Appendix ​7]]).
  
 ===== Availability ===== ===== Availability =====
Line 76: Line 76:
 |:::| If NINTV = 0 : number of sub-steps is based on the norm of the deformation increment and on DIV| |:::| If NINTV = 0 : number of sub-steps is based on the norm of the deformation increment and on DIV|
 |ISOL| = 0 : use of total stresses in the constitutive law| |ISOL| = 0 : use of total stresses in the constitutive law|
-|:::| $\neq$ 0 : use of effective stresses in the constitutive law. See [[appendices:​a8|Appendix 7]] |+|:::| $\neq$ 0 : use of effective stresses in the constitutive law. See [[appendices:​a7|Appendix 7]] |
 |ICBIF| = 0 : nothing| |ICBIF| = 0 : nothing|
 |:::|1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis)| |:::|1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis)|
Line 162: Line 162:
 |E3F|Final elastic Young modulus E($e_{3f}$)| |E3F|Final elastic Young modulus E($e_{3f}$)|
 |Gamma7|equivalent strain at which the Young'​s modulus has reduced to 0.7 times | |Gamma7|equivalent strain at which the Young'​s modulus has reduced to 0.7 times |
 +|Aa|Fitting parameter |
 ^ Line 8 (7G10.0) (Only if IECPS = 2 or 3) ^^  ^ Line 8 (7G10.0) (Only if IECPS = 2 or 3) ^^ 
-|PSICPEAK| +|PSICPEAK| Peak of dilatancy angle for compressive paths (If IECPS=2 then PSICPEAK is the initial value of dilatancy angle
-|PSICLIM| +|PSICLIM| Limit value of dilatancy angle for compressive paths
-|RATPSI| +|RATPSI| Ratio between initial and peak of dilatancy angle
-|BPSI| +|BPSI| Value of EEQU for which PSIC=0.5 (PSICPEAK - PSICLIM)  ​
-|PSIEPEAK| +|PSIEPEAK| Peak of dilatancy angle for extensive paths (If IECPS=2 then PSIEPEAK is the initial value of dilatancy angle)  ​
-|PSIELIM| +|PSIELIM| Limit value of dilatancy angle for extensive paths
-|DECPSI| +|DECPSI| Value of EEQU when the dilatancy angle has been half decreased between its initial and final values
-^ Line 9 (4G10.0) (Only if IDAM = 1) ^^ +^ Line 9 (2G10.0) (Only if IDAM = 1) ^^ 
-|P| +|P|Parameter controlling the damage evolution rate
-|YD0|+|YD0|Initial threshold|
 ===== Stresses ===== ===== Stresses =====
 ==== Number of stresses ==== ==== Number of stresses ====
Line 194: Line 195:
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-43 : for 2D plane strain analysis with bifurcation criterion (ICBIF=1)\\ +48 : for 2D plane strain analysis with bifurcation criterion (ICBIF=1)\\ 
-31 : in all the other cases+36 : in all the other cases
 ==== List of state variables ==== ==== List of state variables ====
 |Q(1)| = 1 in plane strain state | |Q(1)| = 1 in plane strain state |
Line 235: Line 236:
 |Q(34)$\rightarrow$ Q(36)| = reserved for small strain stiffness (E1, E2, E3) | |Q(34)$\rightarrow$ Q(36)| = reserved for small strain stiffness (E1, E2, E3) |
 |Q(37)$\rightarrow$ Q(48)| = reserved for bifurcation | |Q(37)$\rightarrow$ Q(48)| = reserved for bifurcation |
- 
- 
- 
laws/orthopla.1701190687.txt.gz · Last modified: 2023/11/28 17:58 by hangbiao