This is an old revision of the document!
Orthotropic elastic constitutive law for solid elements at constant temperature.
This law is used for mechanical analysis of orthotropic elasticity undergoing large strains.
There are 9 independent parameters : $E_1$, $E_2$, $E_3$, $\nu_{12}$, $\nu_{13}$, $\nu_{23}$, $G_{12}$, $G_{13}$, $G_{23}$. The elastic compliance tensor is : \[D^e_{ijkl} = \begin{bmatrix} \frac{1}{E_1} & \frac{-\nu_{21}}{E_2} & \frac{-\nu_{31}}{E_3} & & & \\ \frac{-\nu_{12}}{E_1} & \frac{1}{E_2} & \frac{-\nu_{32}}{E_3} & & & \\ \frac{-\nu_{13}}{E_1} & \frac{-\nu_{23}}{E_2} & \frac{1}{E_3} & & & \\ & & & \frac{1}{2G_{12}} & & \\ & & & & \frac{1}{2G_{13}} & \\ & & & & & \frac{1}{2G_{23}}\\ \end{bmatrix}\]
The compliance elastic tensor is symmetric (Love, 1944), thus the equalities blow must be satisfied : \[\frac{\nu_{21}}{E_2} = \frac{\nu_{12}}{E_1} \quad , \quad \frac{\nu_{31}}{E_3} = \frac{\nu_{13}}{E_1} \quad , \quad \frac{\nu_{23}}{E_2} = \frac{\nu_{32}}{E_3} \]
Moreover, the strain energy function must be positive (i.e. the quadratic form is said positive definite) : \[\mathbf{U} = \frac{1}{2} \varepsilon_{ij}\varepsilon_{kl}C_{ijkl} > 0\]
Thus, the condition below must be satisfied : \[1 - \nu_{12}\nu_{21} > 0 \quad ; \quad 1 - \nu_{13}\nu_{31} > 0 \quad ; \quad 1 - \nu_{23}\nu_{32} > 0\]\[1-\nu_{12}\nu_{23}\nu_{31}-\nu_{21}\nu_{13}\nu_{32} - \nu_{12}\nu_{21} - \nu_{13}\nu_{31} - \nu_{23}\nu_{32} > 0 \]\[E_1 > 0 \quad ; \quad E_2 > 0 \quad ; \quad E_3 > 0\]\[G_1 > 0 \quad ; \quad G_2 > 0 \quad ; \quad G_3 > 0\]
By inverting the matrix, the elastic tensor is then :
\[C^e_{ijkl} = \begin{bmatrix}
\frac{1-\nu_{23}\nu_{32}}{E_2E_3det} & \frac{\nu_{21}+\nu_{31}\nu_{23}}{E_2E_3det} & \frac{\nu_{21}\nu_{32}+\nu_{31}}{E_2E_3det} & & & \\
\frac{\nu_{12}+\nu_{13}\nu_{32}}{E_1E_3det} & \frac{1-\nu_{13}\nu_{31}}{E_1E_3det} & \frac{\nu_{32}+\nu_{31}\nu_{12}}{E_1E_3det} & & & \\
\frac{\nu_{13}+\nu_{23}\nu_{12}}{E_1E_2det} & \frac{\nu_{23}+\nu_{21}\nu_{13}}{E_1E_2det} & \frac{1-\nu_{21}\nu_{12}}{E_1E_2det} & & & \\
& & & 2G_{12} & & \\
& & & & 2G_{13} & \\
& & & & & 2G_{23} \\
\end{bmatrix}\] with $det=\dfrac{1-\nu_{31}\nu_{13}-\nu_{21}\nu_{12}-\nu_{32}\nu_{23}-2\nu_{31}\nu_{12}\nu_{23}}{E_1E_2E_3}$
There are 5 independent parameters : ${E_{\parallel}}$, ${E_{\perp}}$, ${\nu_{\parallel\parallel}}$, ${\nu_{\parallel\perp}}$, ${G_{\parallel,\perp}}$.
From orthotropic elasticity let us consider ($e_1$,$e_2$) as the isotropic plane (bedding plane for sedimentary rock) and $e_3$ the normal to this plane. The subscripts ${\parallel}$ and $\perp$ indicates, respectively, the direction parallel to bedding and perpendicular to bedding. \[{E_1=E_2=E_{\parallel}}\quad , \quad {E_3=E_{\perp}}\]
The elastic compliance tensor becomes : \[D^e_{ijkl} = \begin{bmatrix} \frac{1}{E_{\parallel}} & \frac{-\nu_{\parallel\perp}}{E{\parallel}} & \frac{-\nu_{\perp\parallel}}{E_{\perp}} & & & \\ \frac{-\nu_{\parallel\parallel}}{E_{\parallel}} & \frac{1}{E_{\parallel}} & \frac{-\nu_{\perp\parallel}}{E_{\perp}} & & & \\ \frac{-\nu_{\parallel\perp}}{E_{\parallel}} & \frac{-\nu_{\parallel\perp}}{E_{\parallel}} & \frac{1}{E_{\perp}} & & & \\ & & & \frac{1}{2G_{\parallel\parallel}} & & \\ & & & & \frac{1}{2G_{\parallel\perp}} & \\ & & & & & \frac{1}{2G_{\parallel\perp}}\\ \end{bmatrix}\]
The compliance elastic tensor is symmetric (Love, 1944), thus the equalities blow must be satisfied : \[\frac{\nu_{\perp\parallel}}{E_{\perp}} = \frac{\nu_{\parallel\perp}}{E_{\parallel}}\]
In the isotropic plane, the shear modulus is obtained as follow : \[G_{\parallel\parallel} = \frac{E_{\parallel}}{2(1+\nu_{\parallel\parallel})}\]
Because of the symmetry of the stress and strain tensors : \[G_{\parallel\perp}=G_{\perp\parallel}\]
The Hooke’s law is defined in the orthotropic axes for orthotropic elasticity. As a result, a change of the reference system is needed to obtain the stress in the global axes. In the purpose of estimating the stresses in the global axes, a relation taking into account this change in the reference system is proposed. This relation is (Cescotto, 1995) : \[\sigma_{ij} = R_{ik}R_{jl}\sigma'_{kl}\] where $R_{ij}$ is a component of the matrix of rotation, $\sigma_{ij}$ the stress in the orthotropic axes and $\sigma'_{ij}$ the stresses in the current configuration.
Generally, the matrix of rotation is characterized by the Euler’s angles. The positive direction of rotation is counter-clockwise.
The (X,Y,Z) space represents the current configuration (or global configuration) while the ($\underline{e_1}$,$\underline{e_2}$,$\underline{e_3}$) space represents the orthotropic configuration. To define the rotation, let consider that the cartesian system are equal. The rotation is decomposed in 3 steps and the definition of the angles will be:
The matrix which defines the rotation may be written : \[R = \begin{bmatrix} \cos\alpha\cos\phi & \sin\alpha\cos\phi & -\sin\phi \\ -\sin\alpha\cos\theta+\sin\theta\sin\phi\cos\alpha & \cos\alpha\cos\theta+\sin\theta\sin\phi\sin\alpha & \sin\theta\cos\phi \\ \sin\theta\sin\alpha +\cos\alpha\sin\phi\cos\theta & \sin\phi\sin\alpha\cos\theta-\sin\theta\cos\alpha & \cos\phi\cos\theta \end{bmatrix}\]
Prepro : LORTHO.F
Plane stress state | NO |
Plane strain state | NO |
Axisymmetric state | NO |
3D state | YES |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 605 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (2I5) | |
---|---|
NINTV | $\neq$ 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step |
= 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV | |
ISOL | = 0 : Use of total stresses in the constitutive law |
$\neq$ 0 : Use of effective stresses in the constitutive law. See Appendix 8 |
Line 1 (3G10.0) | |
---|---|
ALPHA | Angle of rotation of the anisotropic axis around Z axis (see figure below) |
THETA | Angle of rotation of the anisotropic axis around $e_1$ axis (see figure below) |
PHI | Angle of rotation of the anisotropic axis around $e_2$ axis (see figure below) |
Line 2 (6G10.0) | |
E1 | Elastic Young modulus E($e_1$) |
E2 | Elastic Young modulus E($e_2$) |
E3 | Elastic Young modulus E($e_3$) |
G12 | Elastic shear modulus G($e_1e_2$) |
G13 | Elastic shear modulus G($e_1e_3$) |
G23 | Elastic shear modulus G($e_2e_3$) |
Line 3 (5G10.0) | |
ANU12 | Poisson ration NU($e_1e_2$) |
ANU13 | Poisson ration NU($e_1e_3$) |
ANU23 | Poisson ration NU($e_2e_3$) |
RHO | Specific mass |
DIV | Size of sub-steps for computation of NINTV (only if NINTV = 0, Default value = 5.D-3 ) |
6 for 3D analysis
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{zz}$ |
SIG(4) | $\sigma_{xy}$ |
SIG(5) | $\sigma_{xz}$ |
SIG(6) | $\sigma_{yz}$ |
0 (see ELA3D)
Q(1) | = 0 |