Table of Contents

INTEC2

Description

Constitutive law of longitudinal and transversal flow in porous media for a interface element (FAIL2B or FAIN2B)

The model

This law is only used for non linear analysis of longitudinal seepage in porous media interface element.
The case of free surface seepage is also treated.
Transversal fluid transfer between the bodies depends upon the contact state.

  1. Contact occurs (pression non zero) fluid transfer is computed according the transverse transmissivity $T_{t\_c}$.
  2. Contact does not occur, fluid transfer is computed by convection with transverse transmissivity $T_{t\_nc}$.
    In this case, the outside pressure is the following one:
    • INDIC = 1 always the atmosphere pressure
    • INDIC = 0 if the normal to the structure intersects one segment, this segment pressure is chosen; otherwise, the atmosphere pressure is used
    • INDIC = 2 if the normal to the structure intersects one segment, this segment pressure is chosen; otherwise, no flux is computed (interest if 2 layers of contact element exist)

Files

Prepro: LINTEC.F
Lagamine: INTEC2.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state YES

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 117
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (4I5)
INDIC= 0, 1, 2 to define the outside pressure used in case of no contact (see The model)
IKEindex of the longitudinal permeability formulation :
= 0 → $k_l = k_{l0}$.
= 1 → $k_l = f(d) = \frac{\left(D_0 + V\right)^{exp}}{12} = \frac{d^{exp}}{12}$.
ITRindex of transmissivity:
= 0 if FAIL2 element;
= 1 if FAIN2 element.
IDDLDDL number (3 = water, 4 = air, 5 = temperature), only for the case NTANA=5 and FAIL2 element. If NTANA $\neq$ 5 or FAIN2 element, IDDL is always equal to 3 (Default value).

Real parameters

The longitudinal permeability $k$ is an intrinsic permeability $\left(\left[L^2\right]\right)$
($K_l$ is the permeability coefficient $(\left[LT^{-1}\right])$ \[ k_{f,intrinsic} = K_l \frac{\mu_f}{\rho_f g} \\ \left[ L^2 \right] = \left[ LT^{-1} \right] \frac{ \left[ ML^{-1}T^{-1}\right]}{\left[ML^{-3}\right]\left[LT^{-2}\right]} \]

Line 1 (7G10.0)
PERMEAfault longitudinal intrinsic permeability (=$k_{l0}$)
RHOspecific mass of the fluid (=$\rho_f$)
POROSfault porosity (=$n_0$)
EMMAGstorage coefficient (=$C_p$)
ALPHA$\alpha$ * parameter used to
BETA$\beta$ * define the curve $\theta = \theta(p)$
VISCOfluid dynamic viscosity ($\mu_f=10^{-3}$=default value for water at 20°C)
Line 2 (6G10.0)
THCONfault transverse transmissivity ($T_{t\_c}$) when contact occurs
CONVECfault transverse transmissivitty ($T_{t\_nc}$) when contact does not occur
PAMBatmosphere pressure
D0maximal fault closure in absolute value (correspond to D0 from INTME2 mechanical law) for formulation (IKE=1)
EXPexponent (=$exp$) = 2 for cubic law
EPAISfault thickness (useful only if no Goodman's formulation in mechanical law)

The longitudinal permeability of the fault is computed according to IKE value :

The evolution of the stored fluid volume ($\theta$) with the fluid pressure ($p$) is given by the following functions:

Stresses

Number of stresses

= 3 : if FAIL2 element
= 4 : if FAIN2D element

Meaning

SIG(1)longitudinal flow in the interface element
SIG(2)fluid flow stored as a consequence of the evolution of soil porosity
SIG(3)1st transversal fluid flow in the interface element
SIG(4)2nd transversal fluid flow in the interface element (only if FAIN2)

State variables

Number of state variables

4

List of state variables

Q(1)for FAIN2 element: pore pressure inside the fault
for FAIL2 element: 0
Q(2)intrinsic longitudinal permeability $(=k_{long})$
Q(3)transverse transmissivity $(T_{t\_c}\ \text{or}\ T_{t\_nc})$