User Tools

Site Tools


laws:hypofe2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hypofe2 [2023/11/24 11:27]
arthur [Meaning]
laws:hypofe2 [2025/09/10 14:39] (current)
arthur [Number of state variables]
Line 1: Line 1:
 ====== HYPOFE2 ====== ====== HYPOFE2 ======
 ===== Description ===== ===== Description =====
 +
 Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC. Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC.
  
 Can be parallelized with ELEMB (macroscale) or at the perturbation loop (microscale). Can be parallelized with ELEMB (macroscale) or at the perturbation loop (microscale).
  
-Takes into account the hysteresis in the water retention law when used with FKRSAT.+Takes into account the hysteresis in the water retention law when used with FKRSAT. Can also be used with osmotic suction (under development).
 ==== The model ==== ==== The model ====
-This law is only  used for water seepage - air seepage- pollutant diffusion and advection (coupled) for non linear analysis in 2D porous media.+This law is only  used for water seepage - air seepage- pollutant diffusion and advection (coupled ​with water or gas flows) for non linear analysis in 2D porous media.
  
-=== Mass conservation of liquid ​water ===+=== Mass conservation of water (liquid and vapour) ​===
 \[ \[
-\underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w \vec{q_l})}_{\text{Liquide}} = 0+\underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w ​\vec{q_l})}_{\text{Liquide}} + \underbrace{\frac{\partial}{\partial t} (\rho_v . n . S_{r,g}) + div(\rho_v . \vec{q_g})}_{\text{Vapeur}} = 0
 \] \]
  
-=== Liquid ​flow ===+=== Liquid ​and vapour flows ===
 Starting from Darcy'​s law, the liquid water velocity is: Starting from Darcy'​s law, the liquid water velocity is:
 \[ \[
-\vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) \right]\ \text{where}\ k_w = K_w \frac{\mu_w}{\rho_w g}\left[ m^2\right]+\vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \; \rho_w \; \vec{grad}(y) \right]\ \text{where}\ k_w = K_w\; \frac{\mu_w}{\rho_w\; g}\left[ m^2\right]
 \] \]
 +
 +The water vapour only flows in unsaturated pores and depends on the tortuosity of the path:
 +\[
 +\vec{i}_v = - n \; S_{r,g} \; \tau D\;  \rho_s \; \vec{grad} \omega_v
 +\]
 +Where $\omega_v = \rho_v/​\rho_g$ is the dry air mass content in the gaseous mix.
 +
  
 === Liquid State Equations === === Liquid State Equations ===
  
-  - Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\]+  - Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\;\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\]
   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$
-  - Saturation degree $S_w$: \\ Depending on succion ​$s = p_a - p_w : S_w = f(s)$+  - Saturation degree $S_w$: \\ Depending on suction ​$s = p_g - p_w : S_w = f(s)$
  
 === Saturation degree equation (with FKRSAT) === === Saturation degree equation (with FKRSAT) ===
Line 30: Line 38:
  
 The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model: The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model:
-\[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\]  +\[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 ​\left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\]  
-\[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]+\[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 ​\left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]
  
 The hysteresis is then defined by: The hysteresis is then defined by:
-\[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w = a_w \left(S_e^{-1/​m_w}\right)^{1/​n_w}\]  +\[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w = a_w \left(S_e^{-1/​m_w}-1\right)^{1/​n_w}\]  
-\[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/​m_d}\right)^{1/​n_d}\]+\[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/​m_d}-1\right)^{1/​n_d}\]
  
 And therefore: And therefore:
Line 41: Line 49:
  
 The ISR=53 parameters are: CSRW1=$a_d$,​ CSRW2=$n_d$,​ CSRW3=$a_w$,​ CSRW4=$n_w$ and CSRW5=$b$ The ISR=53 parameters are: CSRW1=$a_d$,​ CSRW2=$n_d$,​ CSRW3=$a_w$,​ CSRW4=$n_w$ and CSRW5=$b$
 +
 +=== Osmotic suction model ===
 +
 +TO BE COMPLETED. ​
  
 === Mass conservation of dry air === === Mass conservation of dry air ===
-\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) = 0\]+\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) + div(\vec{i_a}) = 0\]
  
-=== Gas flows ===+=== Dry air and dissolved gas flows ===
 Starting from Darcy'​s law, the gas velocity is: Starting from Darcy'​s law, the gas velocity is:
 \[ \[
-\vec{q_g} = - \frac{k_g}{\mu_g}\left[ \vec{grad}(p_g) + \right]\ \text{où}\ k_g = K_g \frac{\mu_g}{\rho_g g}\left[ m^2\right]+\vec{q_g} = - \frac{k_g}{\mu_g}\left[ \vec{grad}(p_g) + g \rho_g \vec{grad}(y) ​\right]\ \text{où}\ k_g = K_g \frac{\mu_g}{\rho_g g}\left[ m^2\right] 
 +\] 
 + 
 +The diffusion velocity of dry air is proportional to a density gradient. Using the diffusion theory adapted to porous medium, one writes: 
 +\[ 
 +\vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} \omega_a = -\vec{I}_v
 \] \]
 +Where $\omega_a = \rho_a/​\rho_g$ is the dry air mass content inside the gas mix.
  
 === Gas State Equation === === Gas State Equation ===
Line 55: Line 73:
   - Density $\rho_a$ :\\ //​Hypothesis//​ : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,​0}\frac{p_a}{p_{a,​0}} \]   - Density $\rho_a$ :\\ //​Hypothesis//​ : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,​0}\frac{p_a}{p_{a,​0}} \]
   - Intrinsic Permeability $k_g$: \\ Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,​effectif} = k_{g, intrinsic}k_{a,​w}$   - Intrinsic Permeability $k_g$: \\ Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,​effectif} = k_{g, intrinsic}k_{a,​w}$
 +  - Saturation degree $S_g$: \\ Depending on suction $s = p_g - p_w : S_g = f(s) = 1 - S_w$
  
 === Balance Equation of Pollutant === === Balance Equation of Pollutant ===
Line 60: Line 79:
  
 === Pollutant flows === === Pollutant flows ===
-\[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^w - D \frac{\partial C_m}{\partial x_i} \]\\ +\[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^{w/g} - D \frac{\partial C_m}{\partial x_i} \]\\ 
-With C_M and C_m [-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^w$ is the water velocity obtained from Darcy'​s law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient.+With $C_Mand $C_m[-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^{w/g}$ is the water or gas velocity obtained from Darcy'​s law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient.
 ==== Files ==== ==== Files ====
 Prepro: LHYPOFE2.F \\ Prepro: LHYPOFE2.F \\
Line 80: Line 99:
 ^ Line 1 (3I10,​2G10.0) ^^ ^ Line 1 (3I10,​2G10.0) ^^
 |NLAWFEM2|Number of constitutive laws at the subscale| |NLAWFEM2|Number of constitutive laws at the subscale|
-|KFLU|Number of DOF: 1=Pw, 2=Pw+C, 3=Pw+Pg, 4=Pw+C+Pg with C the concentration in pollutant|+|KFLU|Number of DOF at the microscale: 1 = $P_w$, 2 = $P_w+C$, 3 = $P_w+P_g$, 4 = $P_w+C+P_g$ with $Cthe concentration in pollutant|
 |MITER|Maximum number of iterations at the subscale| |MITER|Maximum number of iterations at the subscale|
 |CNORM|Norm for the solver of the subscale| |CNORM|Norm for the solver of the subscale|
-|FACONV|Units of conversion of the RVE (it has a size of 1[-])|+|FACONV|Units of conversion of the RVE (it has a size of 1*FACONV[-])|
  
  
Line 100: Line 119:
 |RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$| |RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$|
 |PMGAS|Gas molar mass $[g/mol]$| |PMGAS|Gas molar mass $[g/mol]$|
-|PA0|Initial gas pressure $\left[ Pa\right]$|+|PG0|Initial gas pressure $\left[ Pa\right]$|
 |PHENRY|Henry coefficient| |PHENRY|Henry coefficient|
-^ Line 4 (1I10) ^^ +^ Line 4 (4I10) ^^ 
-|IVAP|= 1 for vapour, = 0 if liquid water only (VAPOUR NOT IMPLEMENTED YET)| +|IVAP|= 1 for vapour, = 0 if liquid water only
-^ Line 5 (3I10) ^^+|IGAS|= 0 for air, =1 for $H_2$, =2 for $N_2$, = 3 for $Ar$, = 4 for $He$, = 5 for $CO_2$, = 6 for $CH_4$| 
 +|IOSMOTIC|= 0 to neglect osmotic suction, = 1 for osmotic suction with Van't Hoff model, = 2 for osmotic suction with Kelvin ​(water activityand Pitzer model| 
 +|IDIFF|= 0 for the pollutant to diffuse through water, = 1 through gas
 +^ Line 5 (4I10) ^^
 |ISR|Retention curve (=53 for Van Genuchten with hysteresis)| |ISR|Retention curve (=53 for Van Genuchten with hysteresis)|
 |IKW|Water relative permeability curve (=7 for Van Genuchten)| |IKW|Water relative permeability curve (=7 for Van Genuchten)|
 |IKA|Gas relative permeability curve (=6 for Van Genuchten)| |IKA|Gas relative permeability curve (=6 for Van Genuchten)|
 +|N_SUBINCR|Number of additional multiplicator for the number of subincrement in the hysteresis model|
 ^ Line 6 (3G10.0)^^ ^ Line 6 (3G10.0)^^
 |CKW1|First parameter of IKW| |CKW1|First parameter of IKW|
Line 161: Line 184:
 |SIG(16)|Advective flow of dissolved gas along $x$ (unused)| |SIG(16)|Advective flow of dissolved gas along $x$ (unused)|
 |SIG(17)|Advective flow of dissolved gas along $y$ (unused)| |SIG(17)|Advective flow of dissolved gas along $y$ (unused)|
-|SIG(18)|Unused+|SIG(18)|Vapour flow along $x$ $(=f_{vx})$
-|SIG(19)|Unused+|SIG(19)|Vapour flow along $y$ $(=f_{vy})$
-|SIG(20)|Unused|+|SIG(20)|Vapour flow stored $(=f_{ve})$|
 |SIG(21)|Unused| |SIG(21)|Unused|
 |SIG(22)|Unused| |SIG(22)|Unused|
Line 175: Line 198:
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-10 + 5*(Number of Subscale Nodes)\\ +11 + 5*(Number of Subscale Nodes)\\ 
-/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg+/!\ The state variables vector also contains the following information for each subscale node: $X$$Y$$P_w$$C$$P_g$
 ==== List of state variables ==== ==== List of state variables ====
 |Q(1)|Liquid water mass at the RVE| |Q(1)|Liquid water mass at the RVE|
Line 186: Line 209:
 |Q(7)|Homogenised gas relative permeability| |Q(7)|Homogenised gas relative permeability|
 |Q(8)|Homogenised macroscale tortuosity| |Q(8)|Homogenised macroscale tortuosity|
-|Q(9)|Vapour mass at the RVE (unused)+|Q(9)|Vapour mass at the RVE| 
-|Q(10)|Homogenised ​succion+|Q(10)|Homogenised ​total suction $(= p_g - p_w + osmotic)$
-|Q(11 + (i-1)*5)|$X_i$| +|Q(11)|Homogenised osmotic suction $(= osmotic)$| 
-|Q(11 + (i-1)*5 +1)|$Y_i$| +|Q(12 + (i-1)*5)|$X_i$| 
-|Q(11 + (i-1)*5 +2)|$P_{w,​i}$| +|Q(12 + (i-1)*5 +1)|$Y_i$| 
-|Q(11 + (i-1)*5 +3)|$C_i$| +|Q(12 + (i-1)*5 +2)|$P_{w,​i}$| 
-|Q(11 + (i-1)*5 +4)|$P_{g,​i}$|+|Q(12 + (i-1)*5 +3)|$C_i$| 
 +|Q(12 + (i-1)*5 +4)|$P_{g,​i}$|
  
laws/hypofe2.1700821631.txt.gz · Last modified: 2023/11/24 11:27 by arthur