This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
laws:hypofe2 [2023/11/24 09:52] arthur |
laws:hypofe2 [2023/11/29 13:51] (current) arthur [The model] |
||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== HYPOFE2 **(WIP)**====== | + | ====== HYPOFE2 ====== |
===== Description ===== | ===== Description ===== | ||
Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC. | Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC. | ||
Line 25: | Line 25: | ||
- Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$ | - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$ | ||
- Saturation degree $S_w$: \\ Depending on succion $s = p_a - p_w : S_w = f(s)$ | - Saturation degree $S_w$: \\ Depending on succion $s = p_a - p_w : S_w = f(s)$ | ||
+ | |||
+ | === Saturation degree equation (with FKRSAT) === | ||
+ | ISR = 53 Van Genuchten model (ISR=5) with hysteresis implemented. | ||
+ | |||
+ | The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model: | ||
+ | \[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\] | ||
+ | \[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\] | ||
+ | |||
+ | The hysteresis is then defined by: | ||
+ | \[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w = a_w \left(S_e^{-1/m_w}\right)^{1/n_w}\] | ||
+ | \[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/m_d}\right)^{1/n_d}\] | ||
+ | |||
+ | And therefore: | ||
+ | \[S_e^{t+1} = S_e^t + \left(\frac{\partial S_{es}}{\partial s}\right)\times ds\] | ||
+ | |||
+ | The ISR=53 parameters are: CSRW1=$a_d$, CSRW2=$n_d$, CSRW3=$a_w$, CSRW4=$n_w$ and CSRW5=$b$ | ||
=== Mass conservation of dry air === | === Mass conservation of dry air === | ||
Line 48: | Line 64: | ||
==== Files ==== | ==== Files ==== | ||
Prepro: LHYPOFE2.F \\ | Prepro: LHYPOFE2.F \\ | ||
+ | Lagamine: HYPOFE2.F \\ | ||
===== Availability ===== | ===== Availability ===== | ||
|Plane stress state| NO | | |Plane stress state| NO | | ||
Line 115: | Line 132: | ||
^ Line 1 (2I5) ^^ | ^ Line 1 (2I5) ^^ | ||
|ILAW2|Number of the subscale constitutive law (=1:NLAWFEM2)| | |ILAW2|Number of the subscale constitutive law (=1:NLAWFEM2)| | ||
- | |ITYPE2|Type of subscale law (=1 only)| | + | |ITYPE2|Type of subscale law (=1 for Hydraulic pollutant microscale law)| |
^ Line 2 (4G10.0) ^^ | ^ Line 2 (4G10.0) ^^ | ||
|POROS|Material porosity ($=n$)| | |POROS|Material porosity ($=n$)| | ||
Line 124: | Line 141: | ||
===== Stresses ===== | ===== Stresses ===== | ||
==== Number of stresses ==== | ==== Number of stresses ==== | ||
- | 24 | + | 28 |
==== Meaning ==== | ==== Meaning ==== | ||
__In 2D state :__ | __In 2D state :__ | ||
- | |SIG(1)|liquid velocity in the X direction $(=f_{wx})$|| | + | |SIG(1)|$\sigma_x$ (unused)| |
- | |SIG(2)|liquid velocity in the Y direction $(=f_{wy})$|| | + | |SIG(2)|$\sigma_y$ (unused)| |
- | |SIG(3)|liquid velocity stored $(=f_{we})$|| | + | |SIG(3)|$\sigma_{xy}$ (unused)| |
- | |SIG(4)|none|| | + | |SIG(4)|$\sigma_z$ (unused)| |
- | |SIG(5)|gas total velocity in the X direction $(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion| | + | |SIG(5)|Homogenised liquid flow along $x$ $(=f_{wx})$| |
- | |SIG(6)|gas total velocity in the Y direction $(=f_{ay})$|:::| | + | |SIG(6)|Homogenised liquid flow along $y$ $(=f_{wy})$| |
- | |SIG(7)|gas total velocity stored $(=f_{ae})$|:::| | + | |SIG(7)|Homogenised liquid flow stored $(=f_{we})$| |
- | |SIG(8)|none|:::| | + | |SIG(8)|Homogenised mean flow of the pollutant along $x$ $(=(f_{px,a}+f_{px,b})/2)$| |
- | |SIG(9)|conductive heat flow in the X direction $(=f_{tx})$|| | + | |SIG(9)|Homogenised mean flow of the pollutant along $y$ $(=(f_{py,a}+f_{py,b})/2)$| |
- | |SIG(10)|conductive heat flow in the Y direction $(=f_{ty})$|| | + | |SIG(10)|Homogenised pollutant flow stored (takes advection into account) $(=f_{pe})$| |
- | |SIG(11)|energy accumulated by heat capacity $(=f_{te})$|| | + | |SIG(11)|Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,b})$| |
- | |SIG(12)|none|| | + | |SIG(12)|Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,b})$| |
- | |SIG(13)|Water vapour velocity in the X direction $(=f_{vx})$|| | + | |SIG(13)|Homogenised gas flow along $x$ $(=f_{gx})$| |
- | |SIG(14)|Water vapour velocity in the Y direction $(=f_{vy})$|| | + | |SIG(14)|Homogenised gas flow along $y$ $(=f_{gy})$| |
- | |SIG(15)|Water vapour stored $(=f_{ve})$|| | + | |SIG(15)|Homogenised gas flow stored $(=f_{ge})$| |
- | |SIG(16)|none|| | + | |SIG(16)|Advective flow of dissolved gas along $x$ (unused)| |
- | |SIG(17)|dissolved gas advection and diffusion velocity in the X direction|| | + | |SIG(17)|Advective flow of dissolved gas along $y$ (unused)| |
- | |SIG(18)|dissolved gas advection and diffusion velocity in the Y direction|| | + | |SIG(18)|Unused| |
- | |SIG(19)|dissolved gas advection and diffusion velocity stored|| | + | |SIG(19)|Unused| |
- | |SIG(20)|none|| | + | |SIG(20)|Unused| |
- | |SIG(21)|dissolved gas diffusion velocity in the X direction|| | + | |SIG(21)|Unused| |
- | |SIG(22)|dissolved gas diffusion velocity in the Y direction|| | + | |SIG(22)|Unused| |
- | |SIG(23)|dissolved gas and diffusion velocity stored|| | + | |SIG(23)|Unused| |
- | |SIG(24)| none|| | + | |SIG(24)|Unused| |
- | __In 3D state :__ | + | |SIG(25)|Unused| |
- | |SIG(1)|liquid velocity in the X direction $(=f_{wx})$|| | + | |SIG(26)|Unused| |
- | |SIG(2)|liquid velocity in the Y direction $(=f_{wy})$|| | + | |SIG(27)|Unused| |
- | |SIG(3)|liquid velocity in the Z direction $(=f_{wz})$|| | + | |SIG(28)|Unused| |
- | |SIG(4)|liquid velocity stored $(=f_{we})$|| | + | |
- | |SIG(5)|gas total velocity in the X direction $(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion| | + | |
- | |SIG(6)|gas total velocity in the Y direction $(=f_{ay})$|:::| | + | |
- | |SIG(7)|gas total velocity in the Z direction $(=f_{az})$|:::| | + | |
- | |SIG(8)|gas total velocity stored $(=f_{az})$|:::| | + | |
- | |SIG(9)|conductive heat flow in the X direction $(=f_{tx})$|| | + | |
- | |SIG(10)|conductive heat flow in the Y direction $(=f_{ty})$|| | + | |
- | |SIG(11)|conductive heat flow in the Z direction $(=f_{tz})$|| | + | |
- | |SIG(12)|energy accumulated by heat capacity $(=f_{te})$|| | + | |
- | |SIG(13)|Water vapour velocity in the X direction $(=f_{yx})$|| | + | |
- | |SIG(14)|Water vapour velocity in the Y direction $(=f_{yy})$|| | + | |
- | |SIG(15)|Water vapour velocity in the Z direction $(=f_{yz})$|| | + | |
- | |SIG(16)|Water vapour stored $(=f_{ye})$|| | + | |
- | |SIG(17)|dissolved gas advection and diffusion velocity in the X direction || | + | |
- | |SIG(18)|dissolved gas advection and diffusion velocity in the Y direction || | + | |
- | |SIG(19)|dissolved gas advection and diffusion velocity in the Z direction || | + | |
- | |SIG(20)|dissolved gas advection and diffusion velocity stored || | + | |
- | |SIG(21)|dissolved gas diffusion velocity in the X direction || | + | |
- | |SIG(22)|dissolved gas diffusion velocity in the Y direction || | + | |
- | |SIG(23)|dissolved gas diffusion velocity in the Z direction || | + | |
- | |SIG(24)|dissolved gas and diffusion velocity stored|| | + | |
===== State variables ===== | ===== State variables ===== | ||
==== Number of state variables ==== | ==== Number of state variables ==== | ||
- | = 26 in 2D cases \\ | + | 10 + 5*(Number of Subscale Nodes)\\ |
- | = 16 in 3D cases | + | /!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg |
==== List of state variables ==== | ==== List of state variables ==== | ||
- | |Q(1)|water relative permeability $(=k_{rw})$ | | + | |Q(1)|Liquid water mass at the RVE| |
- | |Q(2)|air relative permeability $(=k_{ra})$ | | + | |Q(2)|Pollutant mass at the RVE| |
- | |Q(3)|Soil porosity (= n) | | + | |Q(3)|Gaseous air mass at the RVE| |
- | |Q(4)|Soil saturation degree $(=S_w)$ | | + | |Q(4)|Homogenised macroscale porosity| |
- | |Q(5)|Suction $(=p_c = p_a-p_w)$ | | + | |Q(5)|Water saturation degree| |
- | |Q(6)|water specific mass $(=\rho_w)$ | | + | |Q(6)|Homogenised water relative permeability| |
- | |Q(7)|air specific mass $(=\rho_a)$ | | + | |Q(7)|Homogenised gas relative permeability| |
- | |Q(8)|"Pe number" = convective effect / conductive effect \[= \frac{\rho_f . c_f . T . \vec{q}}{\Gamma_{av} . \vec{grad} (T)}\]| | + | |Q(8)|Homogenised macroscale tortuosity| |
- | |Q(9)|Water content (=w) | | + | |Q(9)|Vapour mass at the RVE (unused)| |
- | |Q(10)|Vapour specific mass $(=\rho_v)$ | | + | |Q(10)|Homogenised succion| |
- | |Q(11)|Vapour pressure $(=p_v)$ | | + | |Q(11 + (i-1)*5)|$X_i$| |
- | |Q(12)|Relative humidity $(=H_r)$ | | + | |Q(11 + (i-1)*5 +1)|$Y_i$| |
- | |Q(13)|Liquid water mass per unit soil volume | | + | |Q(11 + (i-1)*5 +2)|$P_{w,i}$| |
- | |Q(14)|Dry air mass per unit soil volume | | + | |Q(11 + (i-1)*5 +3)|$C_i$| |
- | |Q(15)|Vapour mass per unit soil volume | | + | |Q(11 + (i-1)*5 +4)|$P_{g,i}$| |
- | |Q(16)|Intrinsic permeability | | + | |
- | |Q(17)|Gas soil saturation degree $(=S_g)$ | | + | |
- | |Q(18)|$\alpha (H_2, N_2, …)$ partial pressure $(=p_a^g = p^g - p_{H_2O}^g = \text{gas pressure-vapour pressure})$ | | + | |
- | |Q(19)|Area associated to one integration point | | + | |
- | |Q(20)|Dissolved air concentration $=\frac{\rho_{a-d}}{\rho_w + \rho_{a-d}} = \frac{H_a \rho_a}{\rho_w + H_a \rho_a}$| | + | |
- | |Q(21)|$K_{xx}$ (or zero if IANI = 0) | | + | |
- | |Q(22)|$K_{yy}$ (or zero if IANI = 0) | | + | |
- | |Q(23)|$K_{xy}$ (or zero if IANI = 0) | | + | |
- | |Q(24)|$\varepsilon_1$ | | + | |
- | |Q(25)|$\varepsilon_2$ | | + | |
- | |Q(26)|$\alpha$ (= angle between principal stress and horizontal) | | + | |